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Abstract

Industrial automation disproportionately displaces male-dominated routine tasks, rais-

ing women’s potential wages relative to men’s. Combining American Time Use Survey

(ATUS) data with a shift-share measure of local robot exposure, I document a reallo-

cation of household time going against wage incentives: greater exposure leads women

to withdraw from the market and increase time in childcare and leisure, while men

increase market hours. The effect tends to be amplified in areas with historically high

share of religious attendance, suggesting that these patterns are driven by gender iden-

tity norms. To quantify this friction, I estimate a structural household model with

a ”breadwinner” identity wedge. The model replicates non-monotonicity in time use

observed in the data and implies that identity norms double the gender gap in market

hours relative to a neutral benchmark.
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1 Introduction

Over the last few decades, industrial automation has fundamentally reshaped the labor mar-

ket landscape in advanced economies. The diffusion of industrial robots disproportionately

displaces routine, brawn-intensive tasks—traditionally performed by men—while simulta-

neously increasing the relative demand for cognitive and interpersonal tasks, areas where

women typically possess the advantage (de Vries et al., 2020). Consequently, this techno-

logical adoption functions as a gender-equalizing force, narrowing the gender wage gap by

devaluing male-dominated routine labor (Ge and Zhou, 2020; Giuntella et al., 2024), and

decreasing the marriage market value of men (Anelli et al., 2021). Figure 1 plots the dis-

tribution of occupational robot exposure by sex.1 Occupations at the upper end of the

distribution (i.e., those with high automation risk) are predominantly male, whereas those

at the lower end are predominantly female.

Figure 1: Kernel densities of robot exposure by sex. Source: United States IPUMS Census/ACS microdata,
2000–2020 (Flood et al., 2024). The figure displays the distribution of the robot-exposure score constructed
by Webb (2019).

This study traces the consequences of these structural shifts for intra-household time

allocation, focusing on how automation, by raising women’s relative wages, reshapes the

balance between market labor and household production.

Standard neoclassical theories of household labor supply, such as the unitary or collective

models with Pareto-efficient allocations, predict a clear response to such shifts: as a spouse’s

1Webb (2019) constructs robot exposure by measuring the textual overlap between O*NET task descrip-
tions and robot-related patent text. This measurement strategy reflects a fundamental distinction: robot
exposure is task-based—determined by an occupation’s task mix.
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relative wage and productivity rise, that spouse should substitute time away from home

production and toward market work (Becker, 1965; Chiappori, 1992). Within this framework,

industrial automation should theoretically “unlock” female labor supply by increasing the

opportunity cost of home production.

In this paper, I document a behavioral pattern that challenges this standard predic-

tion. By linking the American Time Use Survey (ATUS) to local labor market exposure

to industrial robots, I find that greater exposure—and the associated rise in women’s rel-

ative wages—induces women to reallocate time away from the market and toward home

production and leisure. Specifically, for every standard deviation increase in robot exposure,

women reduce market work in favor of leisure and childcare by approximately one hour per

day. Conversely, men in exposed households increase their market hours.

In commuting zones with a high share of traditional religious adherents (e.g., Southern

Baptist, Mormon), women’s withdrawal from the labor market is nearly three times larger

than in less conservative areas, suggesting that social norms regarding family specialization

drive this effect. “Breadwinner” norms impose a psychological or social penalty on couples

when the wife’s earnings approach or surpass those of her husband (Bertrand et al., 2015).

Because robot-induced shocks disproportionately depress male earnings in the lower-middle

segment of the distribution, they push a significant mass of households toward earnings

parity—the threshold where identity norms are most likely to bind.

To address endogeneity concerns inherent in shift-share measures, I instrument U.S.

industry-level robot adoption with contemporaneous adoption trends in five European economies:

Denmark, Finland, France, Italy, and Sweden. This strategy isolates variation in relative

wages driven by global technological frontiers, orthogonal to local labor market conditions

or regional gender attitudes. The results remain robust to controlling for concurrent trade

shocks (the “China shock”), adjusting for sample selection into marriage, and accounting for

the correlation in residuals across areas that have similar sectoral compositions.

To quantify the economic magnitude of these norms, I develop and estimate a structural,

semi-cooperative household model of time allocation. A penalty term—defined as a function

of the wife’s earnings relative to the husband’s—captures the disutility arising from violations

of the breadwinner norm. I estimate the model parameters using the Simulated Method of

Moments (SMM) to match the non-monotonic time-use profiles observed in the ATUS. The

structural estimates reveal that identity norms approximately double the gender gap in

market hours relative to an identity-neutral benchmark.

Counterfactual analyses simulating automation-induced shocks to men’s wages highlight

three findings: (i) the norm induces a kink at the equal-earnings threshold, generating an

inverse-U shape in women’s market hours (with a mirror pattern in childcare); (ii) aggregate
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effects scale nonlinearly with the distribution of relative wages, as shifts moving couples

beyond parity disproportionately increase the share of households for which the norm binds;

and (iii) the norm depresses welfare relative to the efficient benchmark by reallocating time

away from market work, even when wives possess high market productivity.

The paper makes four distinct contributions to the literature. First, it examines how

industrial automation reshapes family dynamics. While Anelli et al. (2021) document that

automation reduces marriage rates due to a decline in men’s marriage-market value, and

Matysiak et al. (2023); Costanzo (2025) link it to fertility choices, this study focuses on

the intensive margin: how automation alters spouses’ joint decision-making regarding the

allocation of time between market and non-market activities.

Second, by exploiting variation in spouses’ relative potential wages induced by indus-

trial robots, I address methodological concerns regarding the ”identity norm” hypothesis

(Bertrand et al., 2015). Literature suggests that apparent behavioral anomalies at the point

of earnings parity may stem from misreporting (Heggeness and Murray-Close, 2019; Rosen-

berg, 2021) or endogenous labor supply convergence (Zinovyeva and Tverdostup, 2021). By

utilizing industrial automation as an exogenous source of wage variation, The paper isolate

the causal link between relative earnings and time allocation, circumventing the endogeneity

of reported earnings.

Third, I develop and estimate a structural household time-use model that reproduces

the observed non-monotonic relationship between time allocation and spouses’ wage shares.

Unlike prior structural models focusing on general wage shocks (Blundell et al., 2018) or

parental education (Gobbi, 2018), this framework explicitly captures how shifts in relative

wage shares—specifically those driven by automation—reshape the trade-offs between market

work, childcare, and leisure.

Finally, the paper bridges the disconnect between micro and macro labor supply elastic-

ities by highlighting the role of social norms. While standard macro theory predicts smooth

household insurance responses like the “added worker effect” (Stephens Jr., 2001), empir-

ical evidence documents significant optimization frictions (Chetty et al., 2011; Bick and

Fuchs-Schündeln, 2018). The model identifies identity norms as a structural friction that

explains this divergence, showing why households fail to reallocate labor efficiently when the

husband’s status is threatened.

The remainder of the paper is organized as follows. Section 2 describes the data, sample

restrictions, and the construction of the instrumented shift-share robot exposure. Section 3

details the empirical specification and presents OLS, 2SLS, and robustness results. Section 4

documents stylized facts (Section 4.1) before developing and estimating the structural model.

Section 5 concludes.
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2 Data, sample, and measurement

The main data for the analysis are gathered from the American Time Use Survey (ATUS)

and the International Federation of Robotics (IFR).

Time use. The ATUS provides nationally representative, diary-based measures of minutes

spent on activities over a 24-hour day. The survey has run continuously since 2003, drawing

one respondent (age 15+) from households that recently completed the CPS. The analysis

sample consists of married or cohabiting households with at least one employed spouse and at

least one child aged 10 or younger (following Blundell et al., 2018). Market work corresponds

to the ATUS category “work and work-related activities.” Childcare time is measured by

aggregating “Caring for and helping household children,” “Activities related to household

children’s education,” and “Activities related to household children’s health.”

Table 1 presents summary statistics for the primary analysis sample—married or cohab-

iting households with young children—while Appendix Table A1 provides a comparison with

the general ATUS population. The presence of children aged ten or younger marks a sig-

nificant shift in time-use priorities, characterized by a substantial reallocation of time from

leisure toward childcare and market work.

For men in the analysis sample, daily leisure averages 262 minutes, a sharp decline from

the 357 minutes observed in the general population. This “leisure deficit” is largely absorbed

by a heightened commitment to the labor market; men in the sample record 261.95 minutes

of market work per day (compared to 191 minutes generally) and report usual weekly hours

of 44.0, significantly above the 30.9-hour average for the broader male population.

Women’s time-use profiles reveal a different set of trade-offs. While their market work

time remains relatively stable (132 minutes/day in the sample vs. 127 minutes in the general

population), they experience a more severe compression of leisure, which falls from 310 to

226.80 minutes per day. This reduction is primarily driven by the intensive demands of

childcare, which averages 142.94 minutes per day for women in the sample—nearly double

the 79.19 minutes recorded by their male partners. The analysis sample is younger and more

highly educated than the general population, with over 44% of both men and women holding

tertiary degrees.

Industrial robots. Data on the operational stock of industrial robots at the country–

year–sector level are sourced from the International Federation of Robotics (IFR). The IFR

compiles these data through annual surveys of robot suppliers, covering the period from

1993 to 2019. Following the ISO 8373:2012 standard, the IFR defines an industrial robot as

an “automatically controlled, reprogrammable, multipurpose manipulator, programmable in
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Table 1: Descriptive statistics: ATUS analysis sample (households with young children)

Females Males

Variable Obs Mean Std. Dev. Obs Mean Std. Dev.

Leisure (min/day) 24,748 226.80 164.97 22,021 262.00 195.74
Childcare (min/day) 24,748 142.94 147.38 22,021 79.19 113.27
Market work (min/day) 24,748 132.19 215.60 22,021 261.95 277.40
Age 24,748 35.49 6.78 22,021 38.05 7.54
Hourly wage (USD) 7,381 16.45 10.49 7,839 18.68 10.21
Weekly earnings (USD) 14,013 757.96 534.22 16,666 1,086.80 594.43
Usual work hours per week 23,048 23.56 19.61 20,463 44.00 14.24
Less than secondary (%) 24,748 7.85 26.90 22,021 8.72 28.22
Secondary (%) 24,748 19.12 39.33 22,021 22.17 41.54
Some college (%) 24,748 26.54 44.16 22,021 24.83 43.20
Tertiary (%) 24,748 46.48 49.88 22,021 44.28 49.67

Notes: The sample is restricted to married/cohabiting households with at least one employed
spouse and at least one child aged ≤10. Leisure, childcare, and market work are ATUS diary
minutes/day. Hourly wage, weekly earnings, and usual hours are derived from the linked CPS
files. Education rows report the share (%) within each attainment category.

three or more axes.” Crucially, these machines are fully autonomous and do not require a

dedicated human operator to perform their tasks, distinguishing them from simpler forms of

automated machinery or software-based ICT capital.

The trajectory of robot adoption in the United States is illustrated in Figure 2. While

the initial diffusion of industrial robotics began to rise notably in the early 1990s, the pace

of adoption accelerated sharply after the turn of the millennium, reflecting a fundamental

shift in the technological frontier of American manufacturing.

Figure 2: U.S. industrial robot operational stock, 1993–2019 (IFR).

Despite its comprehensive coverage, the IFR dataset presents specific measurement chal-

lenges. Sectoral disaggregation for the U.S. is consistently available only starting in 2004. To
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maintain a high degree of granularity, the analysis leverages detailed data for 13 manufactur-

ing sub-sectors and six non-manufacturing categories.2 For robots not classified by industry

in the original data, I follow the standard literature by allocating them proportionally based

on the classified distribution within the country. Finally, because the IFR provides data only

at the national level, local labor market exposure must be constructed using the industrial

composition of commuting zones, as detailed in the following section.

2.1 Local exposure to robots

The explanatory variable measures local labor market exposure to industrial robotics at

the commuting-zone level using a Bartik-style instrument, following Acemoglu and Restrepo

(2020). This approach assumes a uniform distribution of robots across industries within a

commuting zone, exploiting variation in the pre-sample local employment distribution by

sector and the national evolution of robot stocks.

In line with standard shift-share measures, the variable is anchored to the industrial

composition of local labor markets before the surge in industrial automation. By using his-

torical differences in regional industrial specialization, this approach addresses endogeneity

concerns arising from the possibility that current employment levels are influenced by the

same unobserved factors driving robot adoption. Historical specialization is proxied by the

1990 employment share in the commuting zone, retrieved from Census data. The measure of

exposure in a given industry is obtained by multiplying the baseline local employment share

by the national ratio of robots to employed workers.3 Subsequently, the industry-specific

scores are summed to obtain the commuting-zone exposure to industrial robotics:

Robotsct =
∑
s

Emp90sc
Emp90c

× StockRobotsst

Emp90s
, (1)

where subscripts s, c, and t denote industry, commuting zone, and year, respectively. Emp90sc

represents the number of employed workers in industry s and commuting zone c in 1990,

and Emp90c is total employment in the commuting zone. The term StockRobotsst
Emp90s

denotes the

number of robots per thousand workers relative to the 1990 baseline.

Endogeneity concerns may arise from several sources. For instance, local labor markets

with stronger employment protection legislation may face higher labor costs, incentivizing

2The categories are: Agriculture and Fishery, Automotive, Construction, Electronics, Food and Bev-
erages, Furniture, Basic Metals, Machinery, Metal Products, Non-metallic Minerals, Mining, Paper, Petro-
chemicals, Research, Services, Textiles, Utilities, and Non-automotive Vehicles.

3Approximately one-third of industrial robots are not classified by sector; these are allocated propor-
tionally based on the classified data, as in Acemoglu and Restrepo (2020).
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firms to install more robots. While this is mitigated by including state-year fixed effects (as

laws are typically enacted at the state level), other local factors—such as union strength or

labor supply responses to economic conditions correlated with automation—could still bias

the estimates.

To address these issues, I instrument U.S. robot adoption using robot usage in European

economies. The instrument is defined as:

RobotsIVct =
1

5

∑
j∈EU5

(∑
s

Emp70sc
Emp70c

× StockRobotsjst
Empj,90s

)
, (2)

where j ∈ EU5 refers to Denmark, Finland, France, Italy, and Sweden. These countries

are ahead of the U.S. in robot adoption.4 The instrument interacts the historical industrial

specialization of the labor market in 1970 (to avoid mechanical correlation with pre-1990 U.S.

robot adoption) with the penetration of robots per thousand workers in European country j.

The 1990 employment levels for the five European countries are retrieved from EUKLEMS

(van Ark and Jäger, 2017).

This instrument exploits common industry-specific trends in automation driven by global

technological supply shocks rather than local U.S. demand. Since the global automation

trend is driven by a small number of international robot suppliers, the relevance of RobotsIVct

is theoretically well-founded. Validity requires that European industry-level automation

affects U.S. time use only via its impact on U.S. robot adoption—i.e., not through concurrent

global industry shocks, trade linkages, or macro conditions, conditional on controls and fixed

effects.

Table 2 reports summary statistics for the shift-share measure. Robot exposure has

a mean of 3.22 (SD 4.12); by construction, one unit corresponds approximately to one

additional robot per 1,000 workers.

Table 2: Summary statistics of robot shift-share measure.

Variable Mean Std. Dev. Min. Max. N

Robots 3.218 4.122 0.816 33.704 80,635

4Germany, while a leader in automation, is excluded from the instrument because its adoption rates are
far higher than other countries and may follow different structural patterns than the U.S. or the EU5.
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3 The effect of robots on time use

This section describes the pooled cross-section model used to examine the relationship be-

tween exposure to automation and household time use choices. It then presents the 2SLS

results and robustness checks.5

3.1 Empirical model

The baseline specification is:

Yict = α + β Robotsct + η′Cict + γc + δs(c)×t + εict, (3)

where Yict represents minutes/day in market work, leisure, and childcare spent by individual

i; Robotsct is the shift–share measure for commuting zone c in year t; and Cict includes

temporal, demographic, and economic controls (day of week, month, holiday; number of

children; respondent’s and spouse’s age and education; indicators for children under 5; ages

of youngest and oldest child; and family–income category). γc are commuting-zone fixed

effects and δs(c)×t are state-by-year fixed effects. β represents the change in Yict for one

additional robot per 1,000 workers. Regressions use ATUS survey weights, and standard

errors are clustered at the commuting-zone–year level. Active job seekers (unemployed and

looking for a job) are excluded to reduce bias driven by the direct unemployment effects of

the shocks.

To address endogeneity, I estimate two-stage least squares (2SLS), instrumenting Robotsct

with its external shifter:

Robotsct = πRobotsIVct + η′Cict + γc + δs(c)×t + uct, (4)

which yields the fitted value R̂obotsct. The second stage replaces the endogenous regressor

with this fitted value:

Yict = α + β R̂obotsct + η′Cict + γc + δs(c)×t + εict. (5)

3.2 Results

This section reports estimation results on three subsamples defined by spouses’ employment:

households in which the spouse of the respondent works, households in which the respon-

5Throughout the 2SLS analyses, the Kleibergen and Paap (2006) F -statistics hover around a value of
300, indicating strong first-stage relevance.
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dent works, and households in which both spouses work. This setup allows me to consider

both intensive and extensive margins in time allocation. In all specifications, Robotsct is

instrumented with the corresponding external shifter (EU5 industry robot adoption).

Table 3 shows the response of daily time use to a one-unit increase in robot exposure

(roughly one additional robot per 1,000 workers). For men, market work rises significantly:

by approximately 14 minutes when including corner solutions (column 1), by roughly 8

minutes for respondent-employed individuals (column 2), and by 18 minutes in two-earner

households (column 3). Simultaneously, men’s leisure falls by roughly 12 minutes in two-

earner households.

For women, the patterns are reversed. Market work declines by approximately 15 minutes

per day in the full sample (column 4) and by roughly 19 minutes when conditioning on em-

ployment (column 5). This time is reallocated primarily toward home production: childcare

time rises by about 6 to 8 minutes (columns 4–6), and leisure increases by 7 to 11 minutes.

Given the exposure standard deviation of about 4, a one-standard-deviation increase scales

these per-unit effects by roughly four, implying substantial shifts in daily routines.

Overall, robot exposure drives a distinct reallocation of time within couples: women

shift out of market work into childcare and leisure, while men shift into market work (and

out of leisure), with effects particularly pronounced in households where both spouses are

employed.

3.3 Mechanism: The Role of Traditional Family Norms

The results presented above pose a challenge to standard theories of household labor supply.

Since industrial robots primarily displace brawn-intensive tasks—traditionally a male com-

parative advantage—automation theoretically tilts the terms of trade within the household

in favor of women. In a frictionless collective model, this shift in comparative advantage

should induce households to reallocate time toward female market work. Moreover, to the

extent that automation depresses male earnings, the resulting negative income shock should

trigger an “added worker effect,” prompting women to increase labor supply to smooth house-

hold consumption (Stephens Jr., 2002). The data, however, reveal the opposite pattern: a

contraction in women’s market hours despite their improving relative market position.

These dynamics can arise from family identity norms. Exposure to automation dispro-

portionately compresses men’s earnings in the lower-middle of the distribution, pushing a

significant mass of couples toward the earnings parity threshold where breadwinner norms

bind (Bertrand et al., 2015). In this region, the psychological cost of the wife out-earning her

husband acts as a high marginal tax rate on her labor, effectively suppressing the incentive to
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Table 3: Effect of robots on time spent working, childcaring, and leisuring per day (2SLS Estimates).

Males Females

(1) (2) (3) (4) (5) (6)

Daily minutes work
Robots 13.92** 8.376* 18.02** -15.40*** -18.76*** -15.26**

(6.598) (4.618) (7.384) (5.073) (5.899) (6.628)

Observations 6,795 6,582 3,905 7,668 4,974 4,546
R-squared 0.426 0.455 0.529 0.297 0.430 0.476

Daily minutes childcare
Robots 0.160 1.687 -0.773 5.579* 8.220*** 8.455**

(2.533) (2.111) (2.707) (2.975) (2.701) (3.383)

Observations 6,795 6,582 3,905 7,668 4,974 4,546
R-squared 0.170 0.179 0.323 0.230 0.232 0.290

Daily minutes leisure
Robots -4.019 -3.869 -11.87*** 7.214** 10.13*** 10.67***

(3.400) (3.365) (3.818) (2.968) (3.186) (3.918)

Observations 6,795 6,582 3,905 7,668 4,974 4,546
R-squared 0.251 0.262 0.362 0.215 0.310 0.353

Spouse employed ✓ ✓ ✓ ✓
Respondent employed ✓ ✓ ✓ ✓

Notes: Sample includes married or cohabiting couples with at least one spouse working and
children aged 10 or less. Control variables in all specifications include state-by-year fixed effects,
spouses’ age and education, number of children (total and under age 5), ages of the youngest and
oldest child, day-of-week and month-of-survey fixed effects, and a holiday indicator. Standard
errors clustered at the commuting-zone–year level are in parentheses. *** p < 0.01, ** p < 0.05,
* p < 0.1.
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work. Consequently, households forgo consumption smoothing to preserve traditional gender

roles, resulting in the observed withdrawal of women from the market and the compensatory

increase in male work hours.

To test this mechanism directly, I exploit spatial variation in cultural attitudes toward

gender roles rooted in religious affiliation. I construct a measure of “traditional norms”

using data from the Churches and Church Membership in the United States, 1990 dataset,

collected by the Association of Statisticians of American Religious Bodies (ASARB). I use

the 1990 baseline—prior to the main wave of robot adoption—to ensure that local religious

composition is not endogenous to contemporaneous economic shocks.

Following the literature linking conservative religious affiliation to traditional gender

attitudes (Glass and Nath, 2006; Guiso et al., 2003), I calculate the share of the population

in each county belonging to denominations that emphasize traditional family structures

and male breadwinning. The set of denominations includes the Church of Jesus Christ of

Latter-day Saints (Mormons), the Southern Baptist Convention, the Assemblies of God, the

Lutheran Church–Missouri Synod, and the Presbyterian Church in America, among others.

I aggregate these adherent counts to the Commuting Zone (CZ) level using the crosswalk

provided by Autor and Dorn (2013) and divide by the total CZ population to obtain the

local share of traditional adherents.

I define a binary indicator DHigh
c equal to one if a commuting zone’s share of traditional

adherents is above the sample median. I then estimate an augmented specification that

interacts robot exposure with this indicator:

Yict = α + β1Robotsct + β2(Robotsct ×DHigh
c ) + η′Cict + γc + δs(c)×t + εict. (6)

In this framework, β1 captures the baseline effect of automation in socially progressive re-

gions, while β2 captures the additional impact in socially conservative regions. Both terms

are instrumented using the corresponding interactions of the European robot instrument.

Table 4 presents the results. For men (Columns 1–3), the interaction term is statistically

insignificant across all specifications for market work. This null result is economically re-

vealing: it suggests that male labor supply responses to automation are driven primarily by

economic necessity (the income effect from falling wages) rather than cultural constraints.

Men in progressive and conservative areas face the same economic shock and respond iden-

tically by attempting to increase market hours.

In sharp contrast, the results for women (Columns 4–6) reveal striking heterogeneity.

In progressive commuting zones (the baseline group), an additional robot per 1,000 workers

reduces women’s market work by approximately 14 minutes per day (Column 6). However, in
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conservative commuting zones, this negative effect is significantly amplified. The interaction

term indicates an additional withdrawal of roughly 26 minutes per day (p < 0.10), implying

a total reduction of approximately 40 minutes per day in high-norm areas. This total effect

is nearly triple the magnitude found in progressive regions.

The asymmetry of these results—null for men, strong for women—provides compelling ev-

idence for the identity mechanism. While economic shocks drive the male response uniformly

across regions, the female response is heavily conditioned by the local cultural environment.

In communities where the “breadwinner” norm is most salient, the identity cost effectively

forces women to withdraw from the labor market, overriding the consumption-smoothing

motives that would otherwise prevail.

An alternative explanation is that these shocks operate through a purely technological

channel: labor-saving innovations may reduce the number of worker-minutes required to

produce a given level of output. Under this mechanism, one would expect to see shorter

market hours and offsetting increases in leisure even among individuals without a co-resident

partner, since the change in time requirements would be independent of household structure.

Appendix Table A2 provides evidence against this interpretation. For individuals not in a

relationship, the estimated effects on market, childcare and leisure time are close to zero,

suggesting that the main results are not driven by generalized reductions in the time intensity

of work tasks but rather by intra-household responses to relative earnings shifts.

3.4 Industrial Automation vs. Trade Shocks

As an additional exercise, I compare the effects of industrial automation with those of ris-

ing import competition from China. The literature has established that the “China shock”

had profound effects on U.S. labor markets, particularly by depressing manufacturing em-

ployment and wages for men (Autor et al., 2013). Furthermore, similar to the robot shock,

trade-induced manufacturing decline has been shown to degrade the “marriage-market value”

of young men, leading to lower marriage and fertility rates (Autor et al., 2019). Figure 3

confirms that men are disproportionately concentrated in occupations with high exposure to

tradable goods industries.6

Despite these similarities, trade and automation operate on the household budget con-

6The tradable share is computed as the pooled, person-weighted probability for each occupation o that
a worker i is employed in a tradable industry:

p̂o =

∑
i∈o wi 1{Industryi ∈ T}∑

i∈o wi
,

where T includes Agriculture/Forestry/Fishing, Mining, Manufacturing, Trans-
port/Communications/Utilities, and Wholesale Trade.
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Table 4: Heterogeneity by Local Gender Norms (IV Estimates)

Males Females

(1) (2) (3) (4) (5) (6)

Daily minutes market work
Trad× Robots -5.888 7.377 -2.769 -31.11** -24.35** -25.85*

(15.98) (14.27) (15.85) (12.59) (11.77) (15.59)
Robots 12.74** 7.989** 14.01** -13.16*** -16.74*** -14.41**

(5.755) (3.935) (6.191) (4.756) (5.397) (5.998)

Observations 4,506 7,306 4,193 7,967 5,400 4,844
R-squared 0.425 0.441 0.477 0.280 0.421 0.430

Daily minutes childcare
Trad× Robots 5.178 5.730 0.275 19.42** 4.414 -0.176

(7.328) (6.103) (6.883) (8.603) (5.580) (7.253)
Robots 0.496 2.588 1.419 3.075 8.957*** 9.350***

(2.280) (2.007) (2.235) (2.546) (2.837) (3.019)

Observations 4,506 7,306 4,193 7,967 5,400 4,844
R-squared 0.224 0.172 0.246 0.236 0.227 0.241

Daily minutes leisure
Trad× Robots -12.72 -11.96 -5.996 6.486 14.36* 21.04*

(11.39) (8.519) (10.76) (7.169) (8.718) (11.01)
Robots -5.545 -3.493 -8.995*** 6.066** 10.22*** 8.534**

(3.830) (3.116) (3.196) (3.031) (2.918) (3.482)

Observations 4,506 7,306 4,193 7,967 5,400 4,844
R-squared 0.288 0.256 0.311 0.206 0.300 0.310

Spouse employed ✓ ✓ ✓ ✓
Respondent employed ✓ ✓ ✓ ✓

Notes: The table reports 2SLS estimates of the effect of robot exposure interacted with
local gender norms. “Trad” is a binary indicator equal to one if the commuting zone has
an above-median share of adherents to traditional religious denominations in 1990. Sample:
married or cohabiting couples with at least one spouse working and children aged 10 or less.
Control variables in all specifications include state-by-year fixed effects, spouses’ age and
education, number of children (total and under age 5), ages of the youngest and oldest child,
day-of-week and month-of-survey fixed effects, and a holiday indicator. Standard errors
clustered at the commuting-zone–year level are in parentheses. *** p < 0.01, ** p < 0.05, *
p < 0.1.
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Figure 3: Kernel densities of tradable industry probability by sex. Source: United States IPUMS Cen-
sus/ACS microdata, 2000–2020 (Flood et al., 2024).

straint through potentially conflicting margins. Trade shocks typically manifest as industry-

level contractions involving extensive-margin adjustments, such as plant closures and per-

manent layoffs (Halla et al., 2020). This generates a theoretical ambiguity. On one hand,

the loss of male income should trigger an “added worker effect,” compelling wives to in-

crease labor supply to smooth consumption (Besedeš et al., 2021). On the other hand, the

degradation of male status might trigger the same identity-based withdrawal observed with

automation.

In contrast, industrial robots represent a task-based shock that substitutes for human

labor at the intensive margin, often allowing the firm to remain viable while devaluing male

tasks (Acemoglu and Restrepo, 2020). Because automation depresses male potential wages

without necessarily forcing immediate unemployment, the “added worker” motive may be

less salient than the “identity” motive. By comparing these two shocks, I test whether

the identity mechanism generalizes to trade: if trade shocks yield similar (albeit potentially

weaker) estimates, it suggests that the identity norm is powerful enough to dampen or even

override the added worker effect even in the context of manufacturing decline.

To isolate these channels, I perform two exercises. First, I replicate the baseline estima-

tions replacing robot exposure with commuting-zone exposure to Chinese imports (Autor

et al., 2013). Second, I perform a formal robustness check by re-estimating the primary

robot-exposure coefficients while explicitly controlling for the trade shock. This ensures

that the impact of automation on household labor supply is not an artifact of concurrent

globalization trends.

14



Measurement of the trade shock. The data for this exercise are integrated from sev-

eral sources. Detailed bilateral trade data by product and year are retrieved from the UN

Comtrade Database. Domestic production and absorption values used to normalize the

shocks are sourced from the U.S. Census Bureau and the NBER-CES Manufacturing In-

dustry Database. Historical industry-specific employment at the commuting-zone level is

derived from the Decennial Census/ACS microdata and County Business Patterns (CBP),

following the regional definitions in Autor et al. (2013).

U.S. imports from China have expanded significantly since the early 1990s, driven by

market reforms, large-scale rural-to-urban migration, and enhanced access to foreign tech-

nology and capital. These domestic transformations, together with China’s accession to the

WTO—which granted it permanent normal trade relations status—have markedly increased

its export capacity. As shown in Figure 4, imports from China began rising in the 1990s,

entered a phase of exponential growth starting with the 2001 WTO accession, and finally

leveled off around 2014.7

Figure 4: U.S. goods imports from China, 1990–2024 (Census basis, nominal).

Following Autor et al. (2013), I extract annual bilateral export flows from China by

product to the United States and to other high-income destinations. Product-level values are

mapped to U.S. industries using standard NAICS concordances and aggregated to construct

industry-level Chinese import exposure.

To construct the measure of local exposure to import competition, I employ the shift-share

methodology of Autor et al. (2013). The shock captures the cumulative growth in Chinese

import penetration within a commuting zone, weighted by the zone’s historical industrial

composition. Specifically, industry-level imports from China are mapped to 397 four-digit

SIC manufacturing industries using NAICS-to-SIC concordances. The local exposure is

7Therefore, the ATUS sample used to investigate the effect of import competition is restricted to the
period 2003–2014.
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defined as:

Tradect =
∑
s

Empsc,90
Empc,90

× ∆ImportCh→US
st

Absorptions,90

, (7)

where ∆ImportCh→US
st = ImportCh→US

st −ImportCh→US
s,91 represents the growth in U.S. imports

from China in industry s between the base year (1991) and year t. The denominator is the

sector’s 1990 domestic absorption (total production plus imports minus exports). I rely on

the change in exposure relative to the baseline, rather than the contemporaneous level, to

isolate the structural displacement shock affecting labor demand—analogous to the robot

exposure measure—rather than capturing persistent regional differences in trade openness.8

To address the endogeneity of U.S. import penetration—specifically the concern that im-

port growth might reflect U.S. domestic demand shocks rather than Chinese supply factors—I

instrument U.S. exposure using industry-level growth of Chinese exports to eight other high-

income countries (Australia, Denmark, Finland, Germany, Japan, New Zealand, Spain, and

Switzerland). The instrument TradeIVct replaces the U.S. import term with foreign import

flows and uses 1980 employment shares as weights to mitigate mechanical correlations with

contemporaneous labor market adjustments.

Gender-oriented decomposition. A key feature of the trade shock is its variation across

sectors with differing gender intensities. While industrial automation is identified by task

content, trade exposure can be decomposed to isolate shocks that load heavily on male-

dominated versus female-dominated industries. This allows for a more direct comparison

with the male-biased nature of robot adoption. Using the historical female share of em-

ployment in each industry-commuting zone pair, fcs,90, and its complement, 1 − fcs,90, I

decompose the overall exposure into gender-specific shocks:

Tradegct =
∑
s

sgcs,90 ×
Empsc,90
Empc,90

× ∆ImportCh→US
st

Absorptions,90

, g ∈ {f,m}, (8)

where sfcs,90 = fcs,90 and smcs,90 = 1 − fcs,90. This decomposition identifies two distinct

sources of variation: Trademct targets sectors like heavy manufacturing and basic metals

where men prevail, while Tradefct loads on sectors like textiles and electronics with higher

female employment shares.

Table 5 reports summary statistics for the aggregate and gender-specific trade measures.

The aggregate exposure to Chinese import competition (Tradect) has a mean of 0.006 and

8Unlike the trade measure, the robot exposure variable defined in Equation 1 does not require explicit
differencing from a base year. Since the operational stock of industrial robots in the early 1990s was negligible
across most industries, the contemporaneous stock StockRobotsst is effectively equivalent to the cumulative
change in adoption since the beginning of the sample period.

16



a standard deviation of 0.010. Given the construction of the variable as a weighted average

of industry-level import penetration ratios, a one-standard-deviation increase corresponds

roughly to a 1 percentage point rise in the share of Chinese imports in domestic absorption.

Decomposing this exposure reveals the gendered nature of the shock. The male-specific

component (Trademct), which isolates exposure in male-dominated industries, averages 0.003

(SD 0.005). In contrast, the female-specific component (Tradefct) is smaller, with a mean of

0.002 (SD 0.004).

Table 5: Summary statistics of trade exposure measures.

Variable Mean Std. Dev. Min. Max. N

Tradect 0.006 0.010 0 0.163 168,414
Trademct 0.003 0.005 0 0.059 168,414

Tradefct 0.002 0.004 0 0.044 168,414

China shock results. Table A3 provides the first set of comparative results using the

aggregate Chinese import penetration measure. In contrast to the robot exposure estimates,

which often show a diverging response between spouses, rising import competition typically

induces a simultaneous reduction in market hours for both partners on the intensive margin.

Specifically, the 2SLS estimates for the two-earner sample (column 3 for men, column 6

for women) indicate that a 1 percentage point increase in import penetration reduces male

market work by roughly 51 minutes per day and female market work by 29 minutes.

Despite the general contraction in market hours, the reallocation toward home production

remains gendered: women significantly increase their time in childcare (by approximately

21 minutes per day in column 6), whereas the effect for men is smaller and lacks statistical

precision. This suggests that while trade shocks act as a more generalized ”negative wealth

shock” that depresses labor supply across the board due to the extensive-margin loss of

manufacturing jobs, the internal household response still defaults to women providing the

bulk of compensatory childcare.

The decomposition into TradeMale and TradeFem in Table A4 allows for a more granular

test of the identity-norm mechanism. The TradeMale shock serves as a specular benchmark

for the robot analysis, as it disproportionately targets male-dominated manufacturing hubs,

thereby raising the wife’s relative wage share.

Under TradeMale, we observe dynamics that largely mirror the automation results: men

in two-earner households significantly reduce their leisure time (by approximately 147 to

176 minutes per 1 pp in 2SLS), consistent with an effort to maintain market attachment or
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household contribution as their sector declines. In contrast, the results for TradeFem—which

loads on sectors where women prevail—show a distinct reversal. Here, the shock to the wife’s

relative earnings leads to a large and significant withdrawal of the husband from market work

(roughly 277 minutes per 1 pp) and an increase in his leisure.

Joint estimation of robot and trade shocks. As a final robustness check, I estimate a

“horse-race” specification that includes both robot exposure and Chinese import competition

simultaneously. This strategy allows me to isolate the impact of task-based automation while

holding constant the broader effects of manufacturing decline and globalization. Table A5

presents the results.

For market work and leisure, the coefficients on robot exposure remain remarkably con-

sistent with the baseline estimates, and in some cases, become even more pronounced. In

the 2SLS specification for two-earner households (Column 3), the positive effect of robots

on male market work nearly doubles to 36.37 minutes (compared to 18.02 in the baseline),

suggesting that trade and automation may exert opposing pressures on male labor supply.

Conversely, the negative effect on female market work remains stable in magnitude but

varies in precision: it retains statistical significance in the broader sample of households

(Column 4, coefficient −15.69∗), but loses significance at the intensive margin (Column 6),

despite the point estimate remaining large (−16.63). Similarly, the reallocation of time to-

ward leisure—a reduction for men and an increase for women—is preserved and remains

statistically significant (Columns 3 and 6).

However, the results for childcare time are less robust in the joint estimation. While the

baseline specification indicated a significant shift toward female childcare, the coefficients in

Table A5 shrink in magnitude and become statistically insignificant for both spouses. This

sensitivity suggests that the specific reallocation of non-market time toward childcare is

difficult to disentangle from the broader disruptions caused by trade shocks, or that the high

spatial correlation between the two shocks inflates standard errors. Nevertheless, the stability

of the results for market work and leisure confirms that the core finding—automation shifting

intra-household labor supply toward a traditional gendered allocation—is not an artifact of

concurrent trade patterns.

3.5 Robustness

The following robustness checks address potential threats to identification and sample valid-

ity that may arise in the main specification.
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Representativeness of the ATUS sample: The effect on wages. A potential concern

in using the American Time Use Survey (ATUS) to study the impact of technology shocks

is its relatively smaller sample size and specific coverage compared to the Decennial Census

or the American Community Survey (ACS) typically used in the literature (e.g., Acemoglu

and Restrepo (2020)). If the labor market effects of robotization estimated within the ATUS

sample deviate significantly from established findings, it would imply that the main results

on time allocation might be driven by sample selection specificities rather than general

equilibrium adjustments.

To validate the representativeness of the sample, I estimate Commuting Zone (CZ) level

wage regressions using aggregated ATUS microdata. I employ a stacked long-difference

specification rather than the standard annual two-way fixed effects approach used in the

main time-use analysis. This choice is motivated by two factors. First, consistent with the

automation literature, local labor markets adjust to structural shocks over the medium-to-

long run; annual wage data is often subject to transitory fluctuations and business cycle

noise that can obscure the structural impact of robot adoption (Acemoglu and Restrepo,

2020). Second, the ATUS sample size is significantly smaller than that of the Census. When

disaggregated to the CZ level, annual observations often yield cells with few respondents,

leading to substantial measurement error. Using short-term differences would exacerbate

attenuation bias due to high sampling error. Relying on stacked differences over 3, 5, and

7 years smooths out high-frequency sampling noise and isolates the structural variation

necessary to identify the causal effects of the shocks.

The model is specified as follows:

∆ lnwct = β ·∆Robotsct + γ′Xc,1990 + δt + ϵct, (9)

where ∆ lnwct is the change in the average log hourly wage for men or women in commuting

zone c over period t (3, 5, or 7 years). The term ∆Robotsct represents the change in exposure

to automation. The vector Xc,1990 includes the standard set of 1990 baseline controls: demo-

graphics, education levels, and manufacturing industry shares. All regressions are weighted

by the ATUS population weights aggregated to the CZ level and include period fixed effects

δt.

Table A6 reports the 2SLS results. In the short run (3-year difference, Columns 1–3), I

observe a statistically significant and economically meaningful negative effect of robotization

on male wages (β = −0.061, p < 0.01). This decline drives a significant narrowing of the

gender wage gap (β = −0.050). Extending the analysis to 5- and 7-year differences, the

negative impact on male wages remains robust and statistically significant, although the
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magnitude of the coefficient attenuates over longer horizons (diminishing to −0.014 in the

7-year specification). Similarly, while the point estimates for the wage gap remain negative

across all horizons, the effect is most precisely estimated in the short run.

Despite the inherent power limitations of the ATUS subsample, these estimates do not

diverge from the patterns typically found using broader Census or ACS data. The results

confirm that robot adoption exerts consistent downward pressure on the wages of the ex-

posed group—men—validating the premise that the time-use shifts documented in the main

analysis are responses to real labor market value erosion.

Correction for sample selection bias. A potential threat to the identification strategy

arises from endogenous sample selection. Recent empirical evidence indicates that negative

labor market shocks driven by automation significantly alter family formation dynamics.

Anelli et al. (2021) document that the decline in men’s marriage-market value in exposed re-

gions reduces marriage rates, increases cohabitation, and elevates divorce risk. Consequently,

limiting the analysis to married or cohabiting couples with young children may introduce

bias if the shocks systematically alter the unobserved composition of households selected

into the sample (e.g., if progressive dual-earner couples are more likely to dissolve or delay

childbearing in response to the shock than traditional couples).

To address this concern, I implement an Inverse Probability Weighting (IPW) procedure

to correct for selection into the analytical sample. I define the underlying “at-risk” population

as all individuals in the ATUS aged 20–55, regardless of marital or parental status. I then

estimate a probit model to predict the probability, P (Sict = 1), that an individual i in

commuting zone c at time t satisfies the baseline sample inclusion criteria S (being married

or cohabiting). The selection equation is specified as:

P (Sict = 1 | RobotsIVct ,Xict) = Φ
(
α + γRobotsIVct +X′

ictβ + δr
)
, (10)

where Xict represents a vector of demographic controls (age, education, race) and δr denotes

Census-region fixed effects. Crucially, I include the external instrument RobotsIVct (European

robot adoption) rather than the endogenous exposure measure. Using the instrument in the

selection equation ensures that the correction isolates selection driven by exogenous global

technological trends, rather than by local unobservables (e.g., local management practices

or plant closures) that might simultaneously affect adoption and household stability.

From the estimated parameters of Equation (10), I calculate the propensity score p̂ict

and construct inverse probability weights wIPW
ict = 1/p̂ict. These weights up-weight observa-

tions that are statistically under-represented in the restricted sample relative to the general
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population due to the global shocks. I then re-estimate the baseline 2SLS specifications

(Equation 5), weighting observations by the product of the original ATUS survey weight

and wIPW
ict . By restoring the representativeness of the sample with respect to shock expo-

sure, this procedure ensures that the estimates capture behavioral changes in time allocation

rather than compositional shifts in the household population.

Table A7 presents the estimates corrected for sample selection. The results remain quan-

titatively robust to the IPW correction: the point estimates for market work and leisure are

statistically indistinguishable from the baseline results, confirming that the observed real-

location of time is driven by intra-household adjustments rather than differential selection

into marriage or parenthood.

Weekly hours worked. ATUS diaries capture a single day and feature many zero-work di-

aries (e.g., full-time workers sampled on a day off), which raises outcome noise and makes es-

timates sensitive to functional-form assumptions in the presence of corner solutions (Hamer-

mesh et al., 2005; Stewart, 2013). To verify that the findings are not an artifact of this one-

day snapshot, Table A8 re-estimates the baseline using respondents’ “usual weekly hours”

at their main job from the CPS interview that precedes the ATUS—a measure that averages

over day-to-day variation and exhibits far fewer zeros. Because usual hours are collected for

workers, these regressions condition on employment.

The coefficients remain tightly aligned with the diary-based estimates. For women, a one-

unit increase in robot exposure reduces usual working time by approximately 1.0 to 1.3 hours

per week (Columns 4–6). This magnitude is consistent with the daily reduction of roughly

15–18 minutes found in the diary estimates (Table 3), which translates to approximately

1.25 to 1.5 hours over a five-day workweek.

Accounting for the automotive industry. A common concern with shift-share mea-

sures of robot exposure, emphasized by Goldsmith-Pinkham et al. (2020), is that their vari-

ation may be driven by sector-specific trends, potentially undermining causal interpretation.

The vehicle sector is especially problematic because the automotive industry has been the

largest adopter of robots in the U.S.9 Appendix Table A9 reports the Rotemberg weights

used to construct the Bartik measure, confirming that the vehicle sector receives a dispro-

portionately large weight compared to other industries.

To address this issue, Appendix Table A10 controls for commuting-zone-specific trends

across quartiles of employment share in the vehicle sector. The coefficients remain broadly

9See Figure 2 in Acemoglu and Restrepo (2020) regarding the rapid rise in robot penetration in this
sector relative to other industries in both the U.S. and European labor markets between 1993 and 2007.
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consistent with the primary findings. While there is a slight decrease in statistical precision

for women’s market work at the intensive margin (Column 6, where the p-value exceeds con-

ventional thresholds), the point estimates for both men and women across most specifications

remain stable and economically significant.

Shock-based standard errors (AKM). To account for the correlation of errors across

regions sharing similar industries, I apply the shift-share inference method proposed by Adão

et al. (2019). Standard clustering at the commuting-zone level may understate standard

errors if residuals are correlated through shared sectoral shocks. The AKM approach re-

centers inference on the sectors (shocks) rather than the regions. I first residualize both

the outcome and the shift-share regressor with respect to controls and fixed effects, then

aggregate these residuals to the sector level using the exposure weights. The variance is

computed based on the limit sequence where the number of sectors goes to infinity, allowing

for arbitrary within-sector correlation.

Applying the AKM estimator of Adão et al. (2019) leaves the qualitative patterns intact,

though precision is naturally more conservative (Table A11). For women, the reduction in

market work remains highly statistically significant across all 2SLS specifications (Columns

4–6), as does the increase in leisure. For childcare, the intensive-margin effect in two-earner

households remains robust and significant.

For men, the results are more sensitive to this conservative inference. While the increase

in market work remains large and significant for two-earner households, the coefficients in

the broader samples (Columns 1–2) are no longer statistically distinguishable from zero.

Overall, the AKM inference confirms the core finding of a within-household reallocation:

women significantly withdraw from market work in favor of leisure and childcare, while men

in dual-earner households intensify their market hours.

The next section proposes a formalization of the causal intuition through a structural

collective model of household time allocation, with parameters estimated by matching ATUS

data on time use.

4 A structural household model of time use

Starting from showing stylized facts on nonlinearities between women wage shares and house-

holds’ time use as a potential mechanism, this section elaborates a collective household model

to reproduce the kink in time allocation and formalize the causal intuition of the empirical

results. Individuals choose how much time to allocate to market work, leisure, and childcare

in a model based on the semi-cooperative framework of Gobbi (2018).
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4.1 Stylized facts on wage shares and time use

This section presents descriptive evidence on how relative wages shape household time allo-

cation. When a woman’s share of total household wages exceeds her partner’s, both spouses

reallocate their time between work, childcare, and leisure in distinct ways. Appendix Sec-

tion B further shows that ISSP data reveal that this non-monotonic pattern extends to

family-oriented beliefs. Finally, building on these stylized facts, the section explores a po-

tential causal mechanism underlying the empirical patterns documented in Section 3.

Data from the ATUS are used to examine the relationship between spouses’ wage shares

and household time allocation. The sample is restricted to married or cohabiting couples

under age 64 with at least one child aged ten or younger. Following Bertrand et al. (2015),

hourly wages are calculated by dividing weekly earnings by weekly hours worked.10 For non-

workers, a potential wage is imputed as the mean wage of employed individuals sharing the

same education level, five-year age bracket, state of residence, and survey year. Including

non-workers allows for the consideration of adjustments on both the intensive and extensive

margins of labor supply.

Figure 5 plots average daily minutes spent working, providing childcare, and engaging

in leisure against the wife’s wage share,11 with separate linear trends fitted on either side of

the parity point. The data reveal striking slope changes (kinks) around the equal-earnings

threshold (0.5).

As the wife’s wage share rises toward parity, her working time increases; however, upon

crossing the threshold, the trend reverses, forming an inverse-V shape. Her childcare time

mirrors this with a V-shaped pattern: it declines as her relative earnings rise toward parity,

but reverts to an upward trend once she becomes the primary earner.

A corresponding reversal characterizes men’s time use. Male market work exhibits a

V-shape—decreasing as the wife contributes more, but rising sharply once she out-earns

him. Conversely, male childcare and leisure follow an inverse-V pattern, increasing up to the

parity point before declining. These patterns suggest that once the “breadwinner” hierarchy

is threatened, households deviate from standard specialization models, with men increasing

market effort and women compensating by taking on more non-market tasks.

4.2 Model set-up

The analysis relies on a semi-cooperative household framework. This modeling choice is

motivated by two empirical regularities: the observed kink in time allocation at the equal-

10Observations implying hourly wages above $100 are dropped due to top-coding truncation.
11The wage-share variable is trimmed to the interval (0.25, 0.75) to avoid sparse extreme observations.
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Figure 5: Relationship between a wife’s wage share and average daily minutes devoted to work, childcare,
and leisure. The figure plots local averages and linear fits allowed to kink at 0.5.
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wage threshold and the prevalence of corner solutions in childcare (where one parent provides

zero hours on the diary day). Standard fully cooperative collective models tend to smooth

out these discontinuities unless ad-hoc frictions are introduced. A semi-cooperative setup,

by contrast, treats market hours as contractible (jointly chosen) but models childcare as a

privately provided public good chosen non-cooperatively. This structure naturally generates

best-response functions with ”flat” zero regions—reflecting strategic free-riding when the

spouse’s investment is sufficient—thereby reproducing the observed kinks and corners with

minimal structural assumptions.

A household consists of two members, i ∈ {f,m}, each characterized by a market wage

rate wi, caring for n children, and endowed with one unit of time. Family members engage

in a two-stage game. In the first stage, they jointly determine their optimal market labor

supply; in the second stage, each individually chooses the time allocated to childcare.

Time budget. Each individual faces the time constraint:

hi + li + (ti + t̃i)n ≤ 1, hi > 0, li > 0, ti ≥ 0, t̃i > 0, (11)

where hi denotes market work time, li leisure time, ti parental quality time invested per

child, t̃i the fixed (non-quality) childcare time cost per child, and n the number of children.

Note that while market work and leisure are assumed strictly positive, quality time ti allows

for corner solutions (ti ≥ 0).

The quality of children is determined by a Cobb-Douglas production function:

q = (1 + tf )
α (1 + tm)

1−α, (12)

with α ∈ [0, 1] governing the relative effectiveness of maternal versus paternal time inputs.

Following Del Boca et al. (2013), consumption goods are assumed to have a negligible effect

on child quality; thus, only time inputs enter the production function, a specification that

facilitates the emergence of corner solutions in optimal childcare supply.

Utility and identity norm. Individual i’s baseline utility is given by:

ui = log(c) + µi log(li) + γi log(q n). (13)
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Following the social-norm tax frameworks of Greenwood et al. (2016)12 and Doepke and

Kindermann (2019)13, consumable income is adjusted by a norm-dependent tax on the wife’s

earnings:

c = ϕ(s)wfhf + wmhm, s =
wf

wf + wm

. (14)

In this model, the ”identity backlash” emerges as the wife’s share of potential household

income approaches that of her husband. Accordingly, the social-norm tax is specified as a

nonlinear, endogenous function of the wife’s relative income share s:

ϕ(s) = exp
[
−χ sκ

]
, χ > 0, κ > 1.

Unlike previous formulations, the tax rate here depends non-linearly on s. This ensures that

social costs materialize primarily once the wife’s wage share crosses a threshold determined

by the curvature parameters χ and κ, while keeping consumption strictly positive.

Stages. Agents play a two-stage semi-cooperative game à la Cournot, solved by backward

induction.

Stage 2 (Childcare): Taking market hours hi as given from the first stage, each individual

i maximizes their private utility with respect to ti:

vi(ti, t−i | h) = log(c) + µi log
(
1− hi − (ti + t̃i)n

)
+ γi log

(
(1 + tf )

α(1 + tm)
1−αn

)
. (15)

This stage results in four possible regimes: both, one, or neither spouse provides quality

childcare time.

Stage 1 (Market Work): In the first stage, agents cooperatively choose market hours to

maximize the household utility function, anticipating the Nash equilibrium outcomes of the

second stage. The household objective is the weighted sum of individual utilities:

uh = θ uf + (1− θ)um,

where θ ∈ (0, 1) denotes the bargaining power of the wife.

Under mild regularity conditions, this game admits a unique subgame perfect equilibrium.

Since each spouse’s time-allocation choice in Stage 2 solves a strictly concave maximization

12They specify household resources as c = (1− τt)wfhf +wmhm, where τt is an exogenous, time-varying
tax capturing gradually weakening anti-work norms against women.

13They model fertility bargaining by assigning the wife a constant cost share χf > 0 of child-rearing
expenditures. A larger χf , interpreted as a stricter gender norm, acts as a multiplicative wedge on her
earnings.
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problem over a compact, convex set:

{ti ≥ 0 : hi + li + (ti + t̃i)n ≤ 1},

Rosen’s existence theorem ensures a unique Nash equilibrium in childcare for any given pair

of market hours. In Stage 1, the induced household payoff is maximized. Since the utility

function is continuous in (hf , hm) and diagonally strictly concave, Brouwer’s fixed-point

theorem ensures existence, while the diagonal strict concavity ensures the uniqueness of the

profile (h∗
f , h

∗
m, t

∗
f , t

∗
m). Thus, the model admits exactly one equilibrium. Depending on the

second-stage outcome, the solution falls into one of the twelve profiles reported in Appendix

Section C.

Assumptions. A1 (Primitives). Preferences are defined as in (13) with parameters

µi > 0, γi > 0, α ∈ (0, 1), wages wi > 0, number of children n ∈ N, and fixed time costs

t̃i ≥ 0 such that the time budget is feasible (1− nt̃i > 0) for i ∈ {f,m}.
A2 (Norm wedge). The function ϕ : [0, 1] → (0, 1] is C2, strictly decreasing, and log-

convex in s (e.g., ϕ(s) = exp[−χsκ] with χ > 0, κ > 1). When s is defined on earnings

(endogenous), the mapping (hf , hm) 7→ log(ϕ(s)wfhf + wmhm) is strictly concave on the

feasible set.14

A3 (Feasible sets). For any (hf , hm) such that 0 ≤ hi ≤ 1−nt̃i, each player’s second-stage

choice set for ti is nonempty, convex, and compact. The joint feasible set for (hf , hm, tf , tm)

is also nonempty, convex, and compact.

Proposition 1 (Existence and uniqueness). Under Assumptions A1–A3:

(i) Stage 2 (Childcare). For any pair of market hours (hf , hm), the second-stage game

in (tf , tm) is a diagonally strictly concave game. Therefore, it admits a unique Nash

equilibrium (t∗f , t
∗
m), and the equilibrium correspondence (t∗f , t

∗
m)(hf , hm) is single-valued

and continuous.

(ii) Stage 1 (Market work). Let V (hf , hm) = θ vf
(
hf , hm, t

∗) + (1 − θ) vm
(
hf , hm, t

∗)
denote the household objective induced by the unique Stage 2 equilibrium. Under A2, V is

strictly concave on the feasible set of (hf , hm); therefore, the Stage 1 problem has a unique

maximizer (h∗
f , h

∗
m).

Consequently, the two-stage semi-cooperative problem has a unique subgame-perfect equilib-

rium (h∗
f , h

∗
m, t

∗
f , t

∗
m).

14A sufficient condition (proved in Appendix C.1) is χ ≤ χ̄(κ,wf , wm, h, h) given the bounds 0 < h ≤
hi ≤ h < 1 implied by the time constraint. If s is defined on potential shares (exogenous), ϕ is independent
of (hf , hm) and strict concavity is immediate.
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4.3 Estimation

The model is estimated to replicate observed patterns in women’s market work, childcare

time, and their share of household wages. Wages and the number of children are drawn from

log-normal distributions parameterized using summary statistics from the ATUS sample

(Table 6).15

Table 6: Summary statistics for simulation inputs

Variable Mean Std. Dev.

Female wages (wf ) 16.309 9.366
Male wages (wm) 18.904 10.084
Number of children (n) 2.105 0.978

The bargaining power parameter, θi, is assumed to follow a logistic-normal distribution:

θi =
1

1 + exp(−zi)
, zi ∼ N

(
θ̄, σ2

)
,

which ensures θi ∈ (0, 1). Here, θ̄ and σ2 denote the mean and variance of the underlying

normal distribution, respectively.

The preference weight for consumption is normalized to unity. With log utility, only the

ratios between the preference weights on consumption, leisure, and child quality are identified

by time-use moments; scaling all utility weights by a constant leaves choices unchanged. Since

consumption quantities are unobserved, fixing the consumption weight anchors the utility

scale and avoids weak identification. The child-quality productivity parameter, α, is fixed

at 0.5, following Del Boca et al. (2013) and Gobbi (2018). The remaining parameters,

Θ = (γf , γm, µf , µm, t̃f , t̃m, θ̄, σ, χ, κ),

are estimated via the Method of Simulated Moments (MSM). Formally, the estimator mini-

mizes the weighted distance between data and model moments:

Θ̂ = argmin
Θ

(
m− m̂(Θ)

m

)′

W

(
m− m̂(Θ)

m

)
, (16)

where m stacks the mean shares of time allocated to market work and childcare across five

bins of the wife’s relative wage share, s =
wf

wf+wm
∈ (0.25, 0.75), yielding 20 moments in total.

I employ the identity weighting matrix, W = I, for three primary reasons: (i) the targeted

15Nominal wages are deflated to constant-2000 dollars.
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moments are standardized as percentage deviations, making equal weighting effectively close

to efficient; (ii) ATUS diary measures are zero-inflated and heteroskedastic, with sparsity

in some bins making the empirical covariance matrix noisy and potentially ill-conditioned;

and (iii) the identity matrix yields a smoother objective function, improving the stability

of the optimization routine. The minimization is performed in two stages: a Differential

Evolution search provides a global candidate minimum, which then seeds a local quadratic-

approximation routine.

Table 7 presents the parameter estimates obtained by simulating 50,000 households, both

for the full model (ϕ ̸= 1) and the restricted model without the social norm (ϕ = 1). In

the baseline specification, the logistic-normal parameters (θ̄ = −0.45) imply an average

female Pareto weight of approximately 0.43. This estimate is consistent with the broader

collective household literature, which typically estimates female bargaining weights below

0.5 (Knowles, 2013; Friedberg and Webb, 2006).

In contrast, estimating the model without the identity norm (ϕ = 1) yields a positive

mean for the underlying distribution (θ̄ = 0.35), implying an average female Pareto weight of

approximately 0.56. This counter-intuitive result suggests that, in the absence of the identity

mechanism, the model must attribute an unrealistically high bargaining power to women to

rationalize their observed labor supply choices. By explicitly modeling the identity cost,

the benchmark model recovers bargaining parameters that align more closely with external

empirical evidence, providing further support for the identity mechanism as a driver of intra-

household allocation.

Table 7: Structural parameter estimates

Parameter Description Estimates

Benchmark (ϕ ̸= 1) No Norm (ϕ = 1)

γf , γm Preferences for child quality 3.67, 4.48 1.49, 4.02
t̃f , t̃m Fixed childcare time cost 0.09, 0.05 0.08, 0.06
µf , µm Preferences for leisure 1.19, 1.11 1.15, 1.37
θ̄, σ Bargaining power (zi distrib.) -0.45, 1.98 0.35, 1.75
κ, χ Identity norm parameters 4.19, 7.27 –

4.4 Numerical results

Using the estimated parameters, this section first compares the simulated moments with

those targeted in the estimation. It then presents counterfactual analyses demonstrating

how households respond to wage shocks at different points in the income distribution.
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4.4.1 Comparison with data

Table 8 compares the empirical averages for time spent working, childcare, and employment

rates with those generated by the model using the benchmark parameters (Table 7). The

model closely replicates the observed time-allocation patterns. On average, men allocate

approximately half of their time budget to market work and 12% to childcare, matching the

data almost exactly. For women, the model captures the division of labor well, predicting a

market work share of 26% (data: 24%) and a childcare share of 22% (data: 23%).

Crucially, the comparison with the ”No Norm” specification (ϕ = 1) highlights the neces-

sity of the identity mechanism. Without the norm, the model struggles to fit the gendered

division of labor simultaneously with employment rates. It underestimates male market work

(0.44 vs. 0.47) while overestimating female market work (0.30 vs. 0.24). Furthermore, the

benchmark model successfully generates a high male employment rate (99.9%) and a lower

female employment rate (57%), qualitatively matching the empirical gap (97% vs. 68%),

despite employment rates being untargeted external moments.

Table 8: Comparison of model and data averages

Sex Moment Model mean (ϕ ̸= 1) Model mean (ϕ = 1) Data mean

Internal moments (Targeted)
Male Work 0.4989 0.4360 0.4709

Childcare 0.1207 0.1303 0.1280
Female Work 0.2608 0.3006 0.2443

Childcare 0.2210 0.1755 0.2342

External moments (Untargeted)
Male Employment 0.9999 0.8543 0.9715
Female Employment 0.5663 0.7163 0.6775

Figure 6 plots the simulated time-use profiles for market work and childcare across five

bins of the wife’s wage share, juxtaposed with the ATUS data. The model successfully re-

produces the key non-monotonicities documented in Section 4.1. Specifically, it captures the

**inverse-V shape** in women’s labor supply: market hours rise as the wife’s relative wage

increases toward parity, but visibly decline once she becomes the primary earner. Similarly,

the model replicates the **V-shaped** trough in female childcare and the corresponding

spikes in male market work beyond the equal-earnings threshold. This structural fit confirms

that the estimated identity cost is sufficient to generate the ”kinked” behavioral responses

observed in the data.
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Model Data

Figure 6: Simulated vs. observed time shares for work and childcare across the distribution of the wife’s
wage share.
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4.4.2 Counterfactuals

Empirical studies of the U.S. robot wave show that the observed narrowing of the gender

wage gap is driven primarily by declining earnings—or outright job loss—among men in

the bottom-to-middle terciles, whereas compression on the female side arises from modest

gains concentrated in the upper terciles of the female distribution (see, e.g., Acemoglu and

Restrepo, 2020; Cortes et al., 2024).

To replicate this pattern quantitatively, I consider wage shocks targeting the bottom

tercile of the male wage distribution. A key challenge in calibrating these shocks is that

empirical estimates typically measure effects on observed wages among employed workers.

However, in the structural model, agents respond to changes in their potential market wage,

which governs decisions on both the intensive (hours worked) and extensive (participation)

margins.

Since exposure to robots generates significant displacement (non-employment), relying

solely on observed wage declines would understate the true shock to men’s labor market

opportunities due to positive selection bias—i.e., the lowest-productivity workers exit the

sample, mechanically propping up the average observed wage. Therefore, I calibrate the

model shocks to match the total earnings effect, combining the decline in hourly wages with

the decline in the probability of employment. Formally, the percentage change in potential

earnings is approximated as:

∆%wpot ≈ (Exposure× βwage)︸ ︷︷ ︸
Intensive Margin

+

(
Exposure× βemp

Base Employment Rate

)
︸ ︷︷ ︸

Extensive Margin

(17)

where βwage is the semi-elasticity of wages and βemp is the marginal effect on the employment-

to-population ratio.

Automation Shock. For the robot counterfactual, I simulate a “high-exposure” scenario

of 3 additional robots per 1,000 workers. This magnitude is representative of the “Rust

Belt” experience (e.g., commuting zones in Michigan and Ohio), which drove the aggregate

displacement results in Acemoglu and Restrepo (2020).

Using estimates for men with less than a college degree (βwage ≈ −0.008; βemp ≈ −0.005)

and the 1990 baseline non-college male employment rate of 0.80,16 the intensive margin shock

is −2.4% (3×−0.008). The extensive margin shock contributes an additional −1.9% decline

16According to BLS historical data for 1990, the employment-to-population ratio for prime-age men with
a high school diploma fluctuated between 0.78 and 0.82. Since the Acemoglu and Restrepo (2020) sample
begins in 1990, 0.80 serves as the appropriate demographic baseline.
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(3 × −0.005/0.80). The sum yields a total potential earnings decline of roughly −4.3%.

Accordingly, I calibrate the robot counterfactual as a 4% decline in potential wages for

men in the first tercile.

Female Wage Complementarity. In addition to the negative shocks to male earnings, it

is reasonable to expect an accompanying positive variation in the potential wages of women

in the upper tail of the distribution. Unlike the direct displacement experienced by low-skill

men, the effect on high-skill women operates through occupational upgrading and sectoral

reallocation.

Cortes et al. (2024) find that in automation-exposed labor markets, women are signifi-

cantly more likely than men to transition out of routine tasks and into cognitive, high-wage

occupations. While the counterfactuals presented below conservatively isolate the decline

in male opportunity costs, these studies suggest a complementarity premium for women—

potentially in the range of 2%—which would act as a mirroring force, accelerating the con-

vergence of spousal relative earnings and amplifying the identity mechanism.

Simulation Results. Figure 7 plots the divergence in time use—specifically the gender

gaps in market work (hm − hf ) and childcare (tf − tm)—across the range of wage shocks.

For the 4% automation shock, the distortionary effect of the norm is already visible.

In the identity-neutral benchmark, the gender gap in market work remains relatively stable,

as the substitution effect is offset by income effects. However, under the identity norm, the

gender work gap widens from a baseline of 0.238 to 0.242—an increase of approximately

1.7%. This divergence drives the “identity distortion” up by roughly 2%.

The right panel displays the corresponding dynamics for childcare (tf − tm). While

allocations here are more rigid due to fixed time costs, the inefficiency persists: the norm

prevents the narrowing of the childcare gap that would naturally occur as men’s relative

opportunity cost of time falls.

Finally, it is reasonable to expect that the total impact of these structural shocks exceeds

the magnitudes illustrated in Figure 7. The figure isolates the effect of the male wage decline;

however, as discussed, automation often induces a simultaneous positive shock to female

wages via occupational upgrading. Since the identity norm responds to the ratio of spousal

earnings, a simultaneous increase in female wages acts as a mirroring force, accelerating the

convergence to the breadwinner threshold. Consequently, the combined effect of collapsing

male opportunity costs and rising female potential earnings would likely generate distortions

in time allocation significantly larger than the conservative estimates reported here.

The calibrated semi-cooperative model formalizes the causal intuition for the results
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presented in Section 3. A negative shock to men’s wages raises the wife’s wage share and,

through the identity cost embedded in the consumption aggregator, creates an endogenous

threshold s⋆ around equal earnings. Below s⋆, standard labor-supply forces dominate and

women’s market hours rise with their relative wage; above s⋆, the identity cost reduces the

marginal payoff to additional female market hours, flipping the slope and shifting time into

childcare and leisure. Because the size of the wage-share shift is greatest near or above

parity, aggregate effects scale nonlinearly with the cross-household distribution of relative

wages: counterfactuals show that the share of couples for which the norm binds increases

when shocks compress the gender wage gap, systematically amplifying gaps in time use.

Figure 7: Simulated divergence in time use gaps in response to negative shocks to first-tercile male wages.
The left panel shows the gender gap in market work (hm − hf ); the right panel shows the gender gap in
childcare (tf − tm). The x-axis represents the multiplier applied to male wages (e.g., 0.96 corresponds to a
4% shock).

5 Conclusion

This paper examines how industrial automation reshapes the allocation of time within house-

holds. By linking ATUS time diaries to commuting-zone exposure to robots and addressing

endogeneity with external industry shifters, I document systematic within-couple realloca-

tions. Greater exposure to robots leads women to shift time out of market work and into

childcare and leisure, while men simultaneously increase market work and reduce leisure.

Quantitatively, one additional robot per 1,000 workers reallocates roughly one hour per

week at the household level across work, childcare, and leisure.

These empirical patterns are rationalized by a structural household model featuring an

identity norm that penalizes couples when the wife out-earns the husband. The model
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reproduces the observed non-monotonicity in time use: as the wife’s potential wage share rises

toward parity, her market hours increase; however, once the breadwinner threshold is crossed,

the identity cost triggers a withdrawal from the labor market and a sharp increase in childcare

time. Counterfactual simulations indicate that this norm roughly doubles the gender gap

in market hours relative to an identity-neutral benchmark. Crucially, because automation

shocks disproportionately depress men’s wages in the lower-middle of the distribution, they

push a significant mass of couples into the region where this norm binds, amplifying gender

gaps in time use even as the raw wage gap narrows.

The findings highlight that cultural norms can act as a substantial friction, preventing

the efficient allocation of time following economic shocks. This suggests several avenues for

policy intervention.

First, policies that subsidize substitutes for home production can weaken the identity

mechanism. Since the norm manifests primarily through the substitution of female market

work for childcare, policies that lower the cost of childcare and early education are particu-

larly relevant. If high-quality external care is affordable and accessible, the relative price of

specializing in home production rises, potentially offsetting the “identity tax” that discour-

ages women from working when their husbands’ earnings fall.

Second, the results provide a novel argument for targeted wage insurance. Standard

adjustment assistance often focuses on retraining displaced workers. However, this paper

shows that a drop in the husband’s wage can trigger a secondary withdrawal of the wife

from the labor force. Wage insurance schemes that shore up the earnings of displaced male

workers could, counter-intuitively, prevent the decline of female labor supply by keeping

households away from the identity discontinuity where the breadwinner norm binds.

Third, place-based policies must account for the gendered nature of local demand shocks.

Regional development policies often aim to restore manufacturing jobs. However, given

the structural shift toward services—where women often hold a comparative advantage—

development strategies should also facilitate the transition of men into service-sector roles.

Reducing the strong gender segregation of occupations would align labor demand with house-

hold supply and, over the long term, potentially soften the rigidity of identity norms.

In sum, automation does not only reallocate tasks across firms; it reallocates time within

households. When relative wages move couples toward earnings parity, social norms can

paradoxically reverse progress in gender equality. Recognizing and quantifying this interac-

tion is essential for designing policies that ensure the benefits of technological change are

distributed efficiently within the family.
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org/10.4232/1.12661.

Kleibergen, F. and Paap, R. (2006). Generalized reduced rank tests using the singular value
decomposition. Journal of Econometrics, 133(1):97–126.

Knowles, J. (2013). Why are married men working so much? an aggregate analysis of intra-
household bargaining and labor supply. The Review of Economic Studies, 80(3):1055–1085.

Matysiak, A., Bellani, D., and Bogusz, H. (2023). Industrial robots and regional fertility in
European countries. European Journal of Population, 39(1):11.

Rosenberg, S. (2021). Revisiting the Breadwinner Norm: The effect of potential relative
earnings on married women’s labor supply. Manuscript, ECARES, Université Libre de
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Table A1: Descriptive statistics: ATUS general population

Females Males

Variable Obs Mean Std. Dev. Obs Mean Std. Dev.

Leisure (min/day) 122,710 310.07 208.33 96,658 356.87 235.57
Childcare (min/day) 122,710 43.10 101.62 96,658 22.34 69.34
Market work (min/day) 122,710 126.61 217.06 96,658 191.39 261.12
Age 122,710 48.37 18.15 96,658 46.77 17.44
Hourly wage (USD) 35,769 15.08 9.23 29,080 17.52 10.25
Weekly earnings (USD) 61,698 709.03 513.95 54,518 951.10 596.42
Usual work hours per week 113,670 21.20 20.66 88,373 30.94 22.49
Less than secondary (%) 122,710 14.37 35.08 96,658 15.69 36.37
Secondary (%) 122,710 25.91 43.81 96,658 25.52 43.60
Some college (%) 122,710 27.95 44.87 96,658 25.39 43.52
Tertiary (%) 122,710 31.77 46.56 96,658 33.40 47.17

Notes: “General population” includes all ATUS respondents by sex. Variable definitions are as in
Table 1.

Table A2: Effect of robots on time spent working, childcaring, and leisuring per day (2SLS). Sample:
respondents with no spouse or unmarried partner.

Males Females

Work Leisure Work Leisure

Robots -1.030 5.324 7.234 -7.132*
(6.457) (5.137) (4.652) (4.314)

Observations 8,519 8,519 11,741 11,741
R-squared 0.318 0.246 0.312 0.187

Respondent employed ✓ ✓ ✓ ✓

Notes: Controls include commuting zone and state-by-year FE, respondent’s age/education, day,
month, holiday. Standard errors clustered at the commuting-zone–year level. *** p < 0.01, **
p < 0.05, * p < 0.1.
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Table A3: Effect of China shock on time spent working, childcaring, and leisuring per day (2SLS).

Males Females

(1) (2) (3) (4) (5) (6)

Daily minutes work
Trade -6,464*** -5,944** -5,106*** 1,907 -2,062 -2,940**

(1,809) (2,391) (1,550) (1,192) (1,380) (1,433)

Observations 3,507 5,726 3,305 6,324 4,300 3,899
R-squared 0.431 0.431 0.512 0.272 0.402 0.460

Daily minutes childcare
Trade 1,127 2,054 605.2 138.9 967.3 2,067**

(873.1) (1,477) (825.9) (656.8) (795.3) (853.1)

Observations 3,507 5,726 3,305 6,324 4,300 3,899
R-squared 0.225 0.171 0.316 0.227 0.226 0.283

Daily minutes leisure
Trade -389.9 469.2 -168.8 -1,453* -784.9 -362.8

(1,145) (1,200) (1,235) (869.9) (977.6) (1,112)

Observations 3,507 5,726 3,305 6,324 4,300 3,899
R-squared 0.312 0.270 0.378 0.208 0.289 0.338

Spouse employed ✓ ✓ ✓ ✓
Respondent employed ✓ ✓ ✓ ✓

Notes: Sample: married or cohabiting couples with at least one spouse working and chil-
dren aged 10 or less. Controls include state-by-year FE, demographic/household controls,
day/month/holiday FE. Standard errors clustered at the commuting-zone–year level. *** p <
0.01, ** p < 0.05, * p < 0.1.
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Table A4: Effect of decomposed China shock on time spent working, childcaring, and leisuring per day
(2SLS).

Males Females

(1) (2) (3) (4) (5) (6)

Daily minutes work
TradeMale 12,104 3,581 8,834 3,027 -1,340 -4,278

(8,036) (5,805) (7,418) (5,362) (7,632) (8,164)
TradeFem -34,282*** -20,546** -27,758** -476.7 -3,874 -1,475

(12,443) (9,692) (12,004) (8,515) (12,102) (13,134)

Daily minutes childcare
TradeMale 6,228 4,300 7,127* -2,684 -1,603 -2,293

(3,924) (2,843) (3,655) (3,261) (3,590) (4,392)
TradeFem -6,492 -1,309 -9,280 4,910 5,079 8,939

(5,678) (4,613) (5,695) (5,229) (5,832) (7,029)

Daily minutes leisure
TradeMale -17,611*** -5,883 -14,711*** -809.3 2,043 426.1

(5,484) (3,835) (5,416) (4,216) (4,775) (5,188)
TradeFem 25,302*** 10,115 21,618** -2,451 -5,012 -1,888

(8,742) (6,177) (8,664) (6,495) (7,639) (8,234)

Spouse employed ✓ ✓ ✓ ✓
Respondent employed ✓ ✓ ✓ ✓

Notes: Sample includes married or cohabiting couples with at least one spouse working and
children aged 10 or less. All specifications use 2SLS. Standard errors clustered at the commuting-
zone–year level. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A5: Joint effects of robots and import competition on time spent working, childcaring, and leisuring
per day (2SLS).

Males Females

(1) (2) (3) (4) (5) (6)

Daily minutes work
Robots 30.02*** 18.57** 36.37*** -15.69* -10.44 -16.63

(8.493) (8.177) (8.249) (8.660) (12.94) (14.47)
Trade -7,383*** -7,244* -6,401*** 3,887* -16.90 -920.8

(2,661) (3,742) (2,147) (2,169) (2,729) (2,862)

Observations 6,795 6,582 3,905 7,668 4,974 4,546
R-squared 0.426 0.455 0.529 0.297 0.430 0.476

Daily minutes childcare
Robots -0.547 1.337 -0.569 -2.966 2.308 1.579

(3.474) (3.902) (3.376) (5.544) (6.428) (7.178)
Trade -1,089 -295.3 -1,556 -981.2 -622.6 123.0

(1,321) (1,829) (1,254) (1,150) (1,487) (1,545)

Observations 6,795 6,582 3,905 7,668 4,974 4,546
R-squared 0.170 0.179 0.323 0.230 0.232 0.290

Daily minutes leisure
Robots -7.832 -2.453 -12.69** 8.970 12.90* 17.83**

(7.182) (5.219) (5.824) (6.480) (7.149) (7.701)
Trade -110.7 558.8 7.496 -1,701 974.0 857.0

(1,926) (1,797) (1,624) (1,555) (1,776) (1,829)

Spouse employed ✓ ✓ ✓ ✓
Respondent employed ✓ ✓ ✓ ✓

Notes: Sample includes married or cohabiting couples with at least one spouse working
and children aged 10 or less. Control variables in all specifications include state-by-
year fixed effects, demographic/household controls, day/month/holiday FE. Standard
errors clustered at the commuting-zone–year level. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table A6: Effect of Robot exposure on wages and wage gap (3, 5, and 7-year differences, 2SLS).

3-Year Differences 5-Year Differences 7-Year Differences

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Male Wages Female Wages Wage Gap Male Wages Female Wages Wage Gap Male Wages Female Wages Wage Gap

Robots -0.061*** -0.009 -0.050*** -0.025** 0.005 -0.027 -0.014** 0.004 -0.017*
(0.011) (0.010) (0.013) (0.010) (0.012) (0.018) (0.006) (0.008) (0.009)

Observations 1,223 1,257 1,141 1,003 1,020 927 806 825 754
R2 0.040 0.012 0.027 0.032 0.015 0.014 0.054 0.011 0.027

Notes: Sample: Working age individuals (25–54) in the ATUS. The dependent
variable is the long difference (3, 5, or 7 years) of the log hourly wage for men,
women, or the gender gap. All specifications include 1990 baseline controls and
year fixed effects. Robust standard errors clustered at the commuting-zone level.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A7: Robustness to Sample Selection: Effect of robots on market work, childcare, and leisure using
Inverse Probability Weighting (2SLS).

Males Females

(1) (2) (3) (4) (5) (6)

Daily minutes work
Robots 12.45** 4.831 12.90** -14.73*** -18.38*** -17.04***

(5.659) (4.492) (6.331) (5.196) (5.469) (6.213)

Daily minutes childcare
Robots -0.589 2.086 0.377 5.898** 9.188*** 8.682***

(2.141) (1.980) (2.020) (2.793) (3.178) (3.339)

Daily minutes leisure
Robots -3.784 -1.575 -8.405** 8.525** 13.55*** 12.40***

(4.512) (3.474) (3.509) (3.481) (3.451) (4.149)

Spouse employed ✓ ✓ ✓ ✓
Respondent employed ✓ ✓ ✓ ✓

Notes: Controls include commuting zone and state-by-year FE, household controls,
day/month/holiday. Sample: Individuals living with a spouse and children aged 10 or less. Stan-
dard errors clustered at the commuting-zone–year level. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table A8: Effect of robot shock on hours worked per week (2SLS).

Males Females

Weekly hours worked (1) (2) (3) (4) (5) (6)

Robots -0.168 -0.0430 -0.159 -1.010** -1.345*** -1.026**
(0.316) (0.203) (0.286) (0.464) (0.390) (0.421)

Spouse employed ✓ ✓ ✓ ✓
Respondent employed ✓ ✓ ✓ ✓

Notes: Controls include commuting zone and state-by-year FE, household controls,
day/month/holiday. Sample: Individuals living with a spouse and children aged 10 or less. Stan-
dard errors clustered at the commuting-zone–year level. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A9: Rotemberg Weights by Industry

Industry Weight Industry Weight

Services 0.000 Furniture 0.010
Metal Machinery 0.008 Vehicles Other 0.013
Agriculture 0.008 Mineral 0.017
Manufacturing, other 0.008 Metal Products 0.019
Metal Products 0.008 Machinery 0.023
Construction 0.009 Food 0.039
Agriculture 0.009 Petrochemicals 0.048
Mining 0.009 Metal Basic 0.081
Research 0.009 Electronics 0.084
Textiles 0.009 Manufact Other 0.122
Utilities 0.009 Automotive 0.448
Paper 0.009

Table A10: Effect of robots on time use, adjusting for commuting-zone-specific trends across quartiles of
employment share in the automotive sector (2SLS).

Males Females

(1) (2) (3) (4) (5) (6)

Daily minutes work
Robots 14.44** 10.29** 16.99** -11.32** -13.49** -10.65

(6.968) (4.514) (7.935) (5.224) (6.300) (6.768)

Daily minutes childcare
Robots 1.913 2.307 1.212 3.918 9.218*** 9.417***

(2.503) (1.976) (2.645) (3.094) (2.873) (3.644)

Daily minutes leisure
Robots -9.457*** -5.544* -12.87*** 7.294** 9.601*** 9.024**

(3.413) (3.277) (3.969) (3.565) (3.524) (4.149)

Spouse employed ✓ ✓ ✓ ✓
Respondent employed ✓ ✓ ✓ ✓

Notes: Controls include commuting zone and state-by-year FE, household controls,
day/month/holiday. Sample: Individuals living with a spouse and children aged 10 or less. Stan-
dard errors clustered at the commuting-zone–year level. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A11: Effect of robots on time use (2SLS). Adão et al. (2019) test for standard errors.

Males Females

(1) (2) (3) (4) (5) (6)

Daily minutes work
Robots 13.92 8.38 18.02*** -15.40*** -18.91*** -15.26***

(18.82) (22.65) (3.21) (5.44) (1.87) (4.49)

Daily minutes childcare
Robots 0.16 1.69 -0.77 6.61 8.22 8.45***

(1.30) (15.66) (6.88) (5.27) (6.12) (1.43)

Daily minutes leisure
Robots -8.79 -3.87 -11.87 6.75*** 10.13*** 9.41***

(17.21) (9.70) (7.89) (1.89) (0.48) (0.99)

Spouse employed ✓ ✓ ✓ ✓
Respondent employed ✓ ✓ ✓ ✓

Notes: Controls include commuting zone and state-by-year FE, household controls,
day/month/holiday. Sample: Individuals living with a spouse and children aged 10 or less. Stan-
dard errors calculated using the Adão et al. (2019) procedure. *** p < 0.01, ** p < 0.05, *
p < 0.1.
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B Relative earnings and family beliefs

Additional stylized facts can be drawn from the Family and Changing Gender Roles IV mod-

ule of the ISSP survey described in ISSP Research Group (2016). Respondents report their

earnings relative to their spouse on a seven-point scale ranging from “My spouse/partner

has no income” to “I have no income.” Furthermore, they express agreement with a series of

statements on family norms, such as “A preschool child is likely to suffer when the mother

works” and “Family life suffers when a woman has a full-time job.”17

Restricting the sample to U.S. couples and excluding the extreme tails of the earnings

distribution,18 I estimate the following specification:

Beliefi = α +
∑
k

βk I(RelEarni = k) + µXi + εi, (18)

where the dependent variable is the agreement score for a given family-norm statement

(higher score indicates disagreement); I(RelEarni = k) is a vector of dummy variables indi-

cating the wife’s earnings position relative to her husband; and Xi controls for respondent

sex, both spouses’ ages and education levels, and marriage duration. Standard errors are

clustered by respondent and spouse education. Appendix Figure A1 presents the resulting

marginal-effects plots.

Across statements, a distinct non-monotonicity emerges. For items stressing the disad-

vantages of maternal employment or endorsing traditional spousal roles (Panels a–d), the

disagreement score follows an inverse-U pattern. Respondents move from agreement (low

score) when the wife earns far less, to strong disagreement (high score) near earnings parity,

and then revert back toward agreement once the wife clearly out-earns the husband. This re-

version suggests that couples in non-traditional earnings arrangements may ostensibly adopt

more traditional attitudes to compensate for the deviation from the norm.

By contrast, attitudes toward maternal employment when children are older (Panel f)

trace a U-shape in the disagreement score: couples at parity are the most likely to agree

that women should work, while those with unequal earnings are more likely to disagree.

Responses regarding maternal employment with preschool-age children (Panel e) display a

similar but weaker downward trend, indicating less sensitivity to relative earnings for this

specific issue.

17Two additional items—“Being a housewife is as fulfilling as working for pay” and “Both partners
should contribute to household income”—were dropped because their directional interpretation regarding
traditionalism is ambiguous.

18Including extreme points strengthens the observed dynamics but may confound the results with invol-
untary unemployment effects.
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“Preschool child suffers if mother works” “Family life suffers if woman works full-time”

“What women really want is home/kids” “Man’s job is to earn money, woman’s is home”

“Should women work: Child under school age” “Should women work: Youngest kid at school”

Figure A1: Marginal effects of the wife’s relative earnings on agreement with family-norm statements.
The y-axis represents the disagreement score (higher = less traditional). The x-axis represents the wife’s
contribution to household income, ranging from much less than the husband (left) to much more (right).
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C Solution of the semi-cooperative model

The Lagrangian of the second stage problem is:

Li = δi log
(
c
)
+ µi log

(
1− (ti + t̃)n− hi

)
+ γi log

(
n (1 + ti)

α (1 + t−i)
1−α
)
+ η ti + σ t−i

where η and σ are the Kuhn-Tucker multipliers associated to the non-negativity constraints

on childcare time. The optimal solution satisfies ηtf = σtm = 0. The Nash Equilibrium of

the second stage of the game can be in four regions, namely: (η > 0, σ > 0), (η = 0, σ =

0), (η > 0, σ = 0), (η = 0, σ > 0).

The Lagrangian for the maximization of the first stage problem is

L = θ
(
δf log(c) + µf log

(
1− (tf + t̃)n− hf

)
+ γf log

(
n (1 + tf )

α (1 + tm)
1−α
))

+(1− θ)
(
δm log(c) + µm log

(
1− (tm + t̃m)n− hm

)
+γm log

(
n (1 + tf )

α (1 + tm)
1−α
))

+ τ hf + ν hm,

where τ and ν are the Kuhn-Tucker multipliers associated to the non-negativity con-

straints on working time. The optimal solution satisfies τhf = νhm = 0, with the exception

of the case hf = hm = 0. We get three possible solutions for each of the four regions defined

in the second stage, for a total of 12 possible time allocation regimes, listed below.

Regime 1a: η > 0, σ > 0, τ = 0, ν = 0

hm =

(
(θ − 1)nwf + (1− θ)ϕn

)
t̃f + (1− θ)wf + (θ − 1)ϕ

)
µm

+
(
θnwmt̃m − θwm

)
µf

+
(
(1− θ)nwmt̃m + (θ − 1)wm

)
δm

+
(
θnwmt̃m − θwm

)
δf

(θ − 1)wm µm − θwm µf + (θ − 1)wm δm − θwm δf
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hf = −

(
(θ − 1)nwf + (1− θ)ϕn

)
t̃f + (1− θ)wf + (θ − 1)ϕ

)
µm

+
(
θnwmt̃m − θwm

)
µf

+
(
(θ − 1)nwf + (1− θ)ϕn

)
t̃f + (1− θ)wf + (θ − 1)ϕ

)
δm

+
(
(θϕn− θnwf )t̃f + θwf − θϕ

)
δf(

(θ − 1)wf + (1− θ)ϕ
)
µm + (θϕ− θwf )µf

+
(
(θ − 1)wf + (1− θ)ϕ

)
δm + (θϕ− θwf )δf

tm = 0

tf = 0

Regime 1b: η > 0, σ > 0, τ = 0, ν > 0

hm = 0

hf =

(
(θ − 1)nt̃f − θ + 1

)
δm +

(
θ − θnt̃f

)
δf

θ µf + (1− θ)δm + θδf

tm = 0

tf = 0

Regime 1c: η > 0, σ > 0, τ > 0, ν = 0

hm = −
(
(θ − 1)nt̃m − θ + 1

)
δm +

(
θ − θnt̃m

)
δf

(θ − 1)µm + (θ − 1)δm − θδf

hf = 0

tm = 0

tf = 0
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Regime 2a: η = 0, σ = 0, τ = 0, ν = 0

hm =

(
(θ − 1)nwf + (1− θ)ϕn

)
t̃f +

(
(1− θ)n− θ + 1

)
wf + (θ − 1)ϕn+ (θ − 1)ϕ

)
µm

+
(
θnwmt̃m + (−θn− θ)wm

)
µf

+
(
(1− θ)nwmt̃m +

(
(θ − 1)n+ θ − 1

)
wm

)
δm

+
(
θnwmt̃m + (−θn− θ)wm

)
δf

+
(
(α− αθ)nwmt̃m +

(
(1− α)θ + α− 1

)
nwf t̃f +

(
(α− 1)θ − α + 1

)
ϕnt̃f

+ (αθ − α)nwm +
(
((α− 1)θ − α + 1)n+ (α− 1)θ − α + 1

)
wf

+
(
(1− α)θ + α− 1

)
ϕn+

(
(1− α)θ + α− 1

)
ϕ
)
γm

+
(
αθnwmt̃m +

(
(α− 1)θnwf + (1− α)θϕn

)
t̃f

+ (−αθn− αθ)wm +
(
(1− α)θn+ (1− α)θ

)
wf + (α− 1)θϕn+ (α− 1)θϕ

)
γf

(θ − 1)wm µm − θwm µf + (θ − 1)wm δm − θwm δf

+(θ − 1)wm γm − θwm γf
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hf = −

(
(θ − 1)nwf + (1− θ)ϕn

)
t̃f +

(
(1− θ)n− θ + 1

)
wf + (θ − 1)ϕn+ (θ − 1)ϕ

)
µm

+
(
θnwmt̃m + (−θn− θ)wm

)
µf

+
(
(θ − 1)nwf + (1− θ)ϕn

)
t̃f +

(
(1− θ)n− θ + 1

)
wf + (θ − 1)ϕn+ (θ − 1)ϕ

)
δm

+
(
(θϕn− θnwf )t̃f + (θn+ θ)wf − θϕn− θϕ

)
δf

+
(
(α− αθ)nwmt̃m +

(
(1− α)θ + α− 1

)
nwf t̃f +

(
(α− 1)θ − α + 1

)
ϕnt̃f

+ (αθ − α)nwm +
(
((α− 1)θ − α + 1)n+ (α− 1)θ − α + 1

)
wf

+
(
(1− α)θ + α− 1

)
ϕn+

(
(1− α)θ + α− 1

)
ϕ
)
γm

+
(
αθnwmt̃m +

(
(α− 1)θnwf + (1− α)θϕn

)
t̃f

+ (−αθn− αθ)wm +
(
(1− α)θn+ (1− α)θ

)
wf + (α− 1)θϕn+ (α− 1)θϕ

)
γf(

(θ − 1)wf + (1− θ)ϕ
)
µm + (θϕ− θwf )µf

+
(
(θ − 1)wf + (1− θ)ϕ

)
δm + (θϕ− θwf )δf

+
(
(θ − 1)wf + (1− θ)ϕ

)
γm + (θϕ− θwf )γf
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tm = −

(θ − 1)nwm µ2
m

+
(
−θnwm µf + (θ − 1)nwm δm − θnwm δf

+
(
((1− α)θ + α− 1)nwmt̃m + ((1− α)θ + α− 1)nwf t̃f

+
(
(α− 1)θ − α + 1

)
ϕnt̃f +

(
(θ − 1)n+ (α− 1)θ − α + 1

)
wm

+
(
((α− 1)θ − α + 1)n+ (α− 1)θ − α + 1

)
wf

+
(
(1− α)θ + α− 1

)
ϕn+

(
(1− α)θ + α− 1

)
ϕ
)
γm − θnwm γf

)
µm

+ α− 1)θnwm γm µf

+
(
(1− α)θ + α− 1

)
nwm γm δm + (α− 1)θnwm γm δf

+
(
((α2 − 2α + 1)θ − α2 + 2α− 1)nwmt̃m

+ ((α2 − 2α + 1)θ − α2 + 2α− 1)nwf t̃f

+
(
(−α2 + 2α− 1)θ + α2 − 2α + 1

)
ϕnt̃f

+
(
((α− α2)θ + α2 − α)n+ (−α2 + 2α− 1)θ + α2 − 2α + 1

)
wm

+
(
(−α2 + 2α− 1)θn+ (−α2 + 2α− 1)θ

)
wf

+
(
(α2 − 2α + 1)θ − α2 + 2α− 1

)
ϕn+

(
(α2 − 2α + 1)θ − α2 + 2α− 1

)
ϕ
)
γ2
m

+
(
(−α2 + 2α− 1)θnwmt̃m +

(
(−α2 + 2α− 1)θnwf + (α2 − 2α + 1)θϕn

)
t̃f

+
(
(α2 − α)θn+ (α2 − 2α + 1)θ

)
wm +

(
(α2 − 2α + 1)θn+ (α2 − 2α + 1)θ

)
wf

+ (−α2 + 2α− 1)θϕn+ (−α2 + 2α− 1)θϕ
)
γfγm

(θ − 1)nwm µ2
m

+
(
−θnwm µf + (θ − 1)nwm δm − θnwm δf

+
(
(2− 2α)θ + 2α− 2

)
nwm γm − θnwm γf

)
µm

+ α− 1)θnwm γm µf

+
(
(1− α)θ + α− 1

)
nwm γm δm + (α− 1)θnwm γm δf

+
(
(α2 − 2α + 1)θ − α2 + 2α− 1

)
nwm γ2

m

+
(
−α2 + 2α− 1

)
θnwm γfγm

53



tf = −

(
(θ − 1)nwf + (1− θ)ϕn

)
µf µm +

(
(αθ − α)nwf + (α− αθ)ϕn

)
γfµm

+
(
θϕn− θnwf

)
µ2
f

+
(
(θ − 1)nwf + (1− θ)ϕn

)
δm +

(
θϕn− θnwf

)
δf

+
(
(αθ − α)nwf + (α− αθ)ϕn

)
γm

+
(
−αθnwmt̃m + (αθϕn− αθnwf )t̃f + αθwm + (αθ − αθn)wf + αθϕn− αθϕ

)
γf

+
(
(αθ − α)nwf + (α− αθ)ϕn

)
γfδm +

(
αθϕn− αθnwf

)
γfδf

+
(
(α2θ − α2)nwmt̃m +

(
(α2θ − α2)nwf

+ (α2 − α2θ)ϕn
)
t̃f + (α2 − α2θ)(wm + wf ) + (α2θ − α2)ϕ

)
γfγm

+
(
−α2θnwmt̃m + (α2θϕn− α2θnwf )t̃f + α2θ(wm + wf )− α2θϕ

)
γ2
f(

(θ − 1)nwf + (1− θ)ϕn
)
µf µm +

(
(αθ − α)nwf + (α− αθ)ϕn

)
γfµm

+
(
θϕn− θnwf

)
µ2
f

+
(
(θ − 1)nwf + (1− θ)ϕn

)
δm +

(
θϕn− θnwf

)
δf

+
(
(αθ − α)nwf + (α− αθ)ϕn

)
γm

+
(
2αθϕn− 2αθnwf

)
γf

+
(
(αθ − α)nwf + (α− αθ)ϕn

)
γfδm +

(
αθϕn− αθnwf

)
γfδf

+
(
(αθ − α)nwf + (α− αθ)ϕn

)
γfγm +

(
αθϕn− αθnwf

)
γ2
f

Regime 2b: η = 0, σ = 0, τ = 0, ν > 0

hm = 0

hf =

(
(θ − 1)nt̃f + (1− θ)n− θ + 1

)
δm +

(
−θnt̃f + θn+ θ

)
δf

θ µf + (1− θ)δm + θδf + (α− αθ)γm + αθγf

tm = −
nµm +

(
(1− α)nt̃m + α− 1

)
γm

nµm + (1− α)n γm
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tf = −

θn µ2
f

+
(
(1− θ)n δm + θn δf + (α− αθ)n γm + (αθnt̃f + αθn− αθ)γf

)
µf

+
(
α− αθ

)
n γf δm + αθn γf δf

+
(
(α2 − α2θ)nt̃f + α2θ − α2

)
γfγm +

(
α2θnt̃f − α2θ

)
γ2
f

θn µ2
f

+
(
(1− θ)n δm + θn δf + (α− αθ)n γm + 2αθn γf

)
µf

+
(
α− αθ

)
n γf δm + αθn γf δf

+
(
α2 − α2θ

)
n γfγm + α2θn γ2

f

Regime 2c: η = 0, σ = 0, τ > 0, ν = 0

hm = −
(
(θ − 1)nt̃m + (1− θ)n− θ + 1

)
δm +

(
−θnt̃m + θn+ θ

)
δf

(θ − 1)µm + (θ − 1)δm − θδf + ((1− α)θ + α− 1)γm + (α− 1)θγf

hf = 0

tm = −

(θ − 1)nµ2
m

+
(
(θ − 1)n δm − θn δf +

(
((1− α)θ + α− 1)nt̃m

+ ((1− α)θ + α− 1)n+ (α− 1)θ − α + 1
)
γm + (α− 1)θn γf

)
µm

+
(
(1− α)θ + α− 1

)
nγm δm + (α− 1)θnγm δf

+
(
((α2 − 2α + 1)θ − α2 + 2α− 1)nt̃m + (−α2 + 2α− 1)θ + α2 − 2α + 1

)
γ2
m

+
(
(−α2 + 2α− 1)θnt̃m + (α2 − 2α + 1)θ

)
γfγm

(θ − 1)nµ2
m

+
(
(θ − 1)n δm − θn δf +

(
(2− 2α)θ + 2α− 2

)
nγm + (α− 1)θn γf

)
µm

+
(
(1− α)θ + α− 1

)
nγm δm + (α− 1)θnγm δf

+
(
(α2 − 2α + 1)θ − α2 + 2α− 1

)
nγ2

m + (−α2 + 2α− 1)θn γfγm

tf = − nµf + (αnt̃f − α)γf
nµf + αn γf
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Regime 3a: η > 0, σ = 0, τ = 0, ν = 0

hm =

(
(θ − 1)nwf + (1− θ)ϕn

)
t̃f + (1− θ)wf + (θ − 1)ϕ

)
µm

+
(
θnwmt̃m + (−θn− θ)wm

)
µf

+
(
(1− θ)nwmt̃m +

(
(θ − 1)n+ θ − 1

)
wm

)
δm

+
(
θnwmt̃m + (−θn− θ)wm

)
δf

+
((

(1− α)θ + α− 1
)
nwf +

(
(α− 1)θ − α + 1

)
ϕn
)
t̃f

+
(
(α− 1)θ − α + 1

)
wf +

(
(1− α)θ + α− 1

)
ϕ
)
γm

+
((

(α− 1)θnwf + (1− α)θϕn
)
t̃f + (1− α)θwf + (α− 1)θϕ

)
γf

(θ − 1)wm µm − θwm µf

+
(
(θ − 1)wm − θwm

)
δm − θwm δf

+
(
(1− α)θ + α− 1

)
wm γm + (α− 1)θwm γf

hf = −

(
(θ − 1)nwf + (1− θ)ϕn

)
t̃f + (1− θ)wf + (θ − 1)ϕ

)
µm

+
(
θnwmt̃m + (−θn− θ)wm

)
µf

+
(
(θ − 1)nwf + (1− θ)ϕn

)
t̃f + (1− θ)wf + (θ − 1)ϕ

)
δm

+
(
(θϕn− θnwf )t̃f + θwf − θϕ

)
δf

+
((

(1− α)θ + α− 1
)
nwf +

(
(α− 1)θ − α + 1

)
ϕn
)
t̃f +

(
(α− 1)θ − α + 1

)
wf +

(
(1− α)θ

+ α− 1
)
ϕ
)
γm +

((
(α− 1)θnwf + (1− α)θϕn

)
t̃f + (1− α)θwf + (α− 1)θϕ

)
γf(

(θ − 1)wf + (1− θ)ϕ
)
µm + (θϕ− θwf )µf

+
(
(θ − 1)wf + (1− θ)ϕ

)
δm + (θϕ− θwf )δf

+
(
(1− α)θ + α− 1

)
wf +

(
(α− 1)θ − α + 1

)
ϕ
)
γm

+
(
(α− 1)θwf + (1− α)θϕ

)
γf
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tm = −

(θ − 1)nwm µ2
m

+
(
−θnwm µf + (θ − 1)nwm δm − θnwm δf

+
(
((1− α)θ + α− 1)nwmt̃m + ((1− α)θ + α− 1)nwf t̃f

+
(
(α− 1)θ − α + 1

)
ϕnt̃f +

(
((1− θ) + α− 1)n+ (α− 1)θ − α + 1

)
wm

+
(
(α− 1)θ − α + 1

)
wf +

(
(1− α)θ + α− 1

)
ϕ
)
γm + (α− 1)θnwm γf

)
µm

+
(
α− 1

)
θnwm γm µf

+
(
(1− α)θ + α− 1

)
nwm γm δm + (α− 1)θnwm γm δf

+
(
((α2 − 2α + 1)θ − α2 + 2α− 1)nwmt̃m

+ ((α2 − 2α + 1)θ − α2 + 2α− 1)nwf t̃f

+
(
(−α2 + 2α− 1)θ + α2 − 2α + 1

)
ϕnt̃f

+
(
(−α2 + 2α− 1)θ + α2 − 2α + 1

)
wm

+
(
(−α2 + 2α− 1)θ + α2 − 2α + 1

)
wf

+
(
(α2 − 2α + 1)θ − α2 + 2α− 1

)
ϕ
)
γ2
m

+
(
(−α2 + 2α− 1)θnwmt̃m +

(
(−α2 + 2α− 1)θnwf + (α2 − 2α + 1)θϕn

)
t̃f

+
(
(α2 − 2α + 1)θ + α2 − 2α + 1

)
wm

+
(
(α2 − 2α + 1)θ + α2 − 2α + 1

)
wf + (−α2 + 2α− 1)θϕ

)
γfγm

(θ − 1)nwm µ2
m

+
(
−θnwm µf + (θ − 1)nwm δm − θnwm δf

+
(
(2− 2α)θ + 2α− 2

)
nwm γm + (α− 1)θnwm γf

)
µm

+
(
α− 1

)
θnwm γm µf

+
(
(1− α)θ + α− 1

)
nwm γm δm + (α− 1)θnwm γm δf

+
(
(α2 − 2α + 1)θ − α2 + 2α− 1

)
nwm γ2

m + (−α2 + 2α− 1)θnwm γfγm

tf = 0
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Regime 3b: η > 0, σ = 0, τ = 0, ν > 0

hm = 0

hf =

(
(θ − 1)nt̃f − θ + 1

)
δm +

(
θ − θnt̃f

)
δf

θ µf + (1− θ)δm + θδf

tm = −
nµm +

(
(1− α)nt̃m + α− 1

)
γm

nµm + (1− α)n γm

Regime 3c: η > 0, σ = 0, τ > 0, ν = 0

hm = −
(
(θ − 1)nt̃m + (1− θ)n− θ + 1

)
δm +

(
−θnt̃m + θn+ θ

)
δf

(θ − 1)µm + (θ − 1)δm − θδf +
(
(1− α)θ + α− 1

)
γm + (α− 1)θγf

hf = 0

tm = −

(θ − 1)nµ2
m

+
(
(θ − 1)n δm − θn δf +

(
(1− α)θ + α− 1

)
nt̃m +

(
(1− α)θ + α− 1

)
n

+ (α− 1)θ − α + 1
)
γm + (α− 1)θn γf

)
µm

+
(
(1− α)θ + α− 1

)
nγm δm + (α− 1)θnγm δf

+
(
(α2 − 2α + 1)θ − α2 + 2α− 1

)
nt̃m +

(
−α2 + 2α− 1

)
θ + α2 − 2α + 1

)
γ2
m

+
(
(−α2 + 2α− 1)θnt̃m + (α2 − 2α + 1)θ

)
γfγm

(θ − 1)nµ2
m

+
(
(θ − 1)n δm − θn δf +

(
(2− 2α)θ + 2α− 2

)
nγm + (α− 1)θn γf

)
µm

+
(
(1− α)θ + α− 1

)
nγm δm + (α− 1)θnγm δf

+
(
(α2 − 2α + 1)θ − α2 + 2α− 1

)
nγ2

m +
(
−α2 + 2α− 1

)
θn γfγm

tf = 0
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Regime 4a: η = 0, σ > 0, τ = 0, ν = 0

hm =

(
(θ − 1)nwf + (1− θ)ϕn

)
t̃f +

(
(1− θ)n− θ + 1

)
wf + (θ − 1)ϕn+ (θ − 1)ϕ

)
µm

+
(
θnwmt̃m − θwm

)
µf

+
(
(1− θ)nwmt̃m + (θ − 1)wm

)
δm

+
(
θnwmt̃m − θwm

)
δf

+
(
(α− αθ)nwmt̃m + (αθ − α)wm

)
γm

+
(
αθnwmt̃m − αθwm

)
γf

(θ − 1)wm µm − θwm µf + (θ − 1)wm δm − θwm δf

+(αθ − α)wm γm − αθwm γf

hf = −

(
(θ − 1)nwf + (1− θ)ϕn

)
t̃f +

(
(1− θ)n− θ + 1

)
wf + (θ − 1)ϕn+ (θ − 1)ϕ

)
µm

+
(
θnwmt̃m − θwm

)
µf

+
(
(θ − 1)nwf + (1− θ)ϕn

)
t̃f +

(
(1− θ)n− θ + 1

)
wf + (θ − 1)ϕn+ (θ − 1)ϕ

)
δm

+
(
(θϕn− θnwf )t̃f + (θn+ θ)wf − θϕn− θϕ

)
δf

+
(
(α− αθ)nwmt̃m + (αθ − α)wm

)
γm

+
(
αθnwmt̃m − αθwm

)
γf(

(θ − 1)wf + (1− θ)ϕ
)
µm + (θϕ− θwf )µf

+
(
(θ − 1)wf + (1− θ)ϕ

)
δm + (θϕ− θwf )δf

+
(
(αθ − α)wf + (α− αθ)ϕ

)
γm + (αθϕ− αθwf )γf

tm = 0
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tf = −

(
(θ − 1)nwf + (1− θ)ϕn

)
µf +

(
(αθ − α)nwf + (α− αθ)ϕn

)
γf

)
µm

+
(
θϕn− θnwf

)
µ2
f

+
(
(θ − 1)nwf + (1− θ)ϕn

)
δm +

(
θϕn− θnwf

)
δf

+
(
(θ − 1)nwf + (1− θ)ϕn

)
γm

+
(
−αθnwmt̃m + (αθϕn− αθnwf )t̃f + (αθn+ αθ)wm + (αθ − θn)wf + θϕn− αθϕ

)
γf

+
(
(αθ − α)nwf + (α− αθ)ϕn

)
γfδm +

(
αθϕn− αθnwf

)
γfδf

+
(
(α2θ − α2)nwmt̃m +

(
(α2θ − α2)nwf

+ (α2 − α2θ)ϕn
)
t̃f + (α2 − α2θ)(wm + wf ) + (α2θ − α2)ϕ

)
γfγm

+
(
−α2θnwmt̃m + (α2θϕn− α2θnwf )t̃f + α2θ(wm + wf )− α2θϕ

)
γ2
f(

(θ − 1)nwf + (1− θ)ϕn
)
µf +

(
(αθ − α)nwf + (α− αθ)ϕn

)
γf

)
µm

+
(
θϕn− θnwf

)
µ2
f

+
(
(θ − 1)nwf + (1− θ)ϕn

)
δm +

(
θϕn− θnwf

)
δf

+
(
(θ − 1)nwf + (1− θ)ϕn

)
γm

+
(
(−α− 1)θnwf + (α + 1)θϕn

)
γf µf

+
(
(αθ − α)nwf + (α− αθ)ϕn

)
γfδm +

(
αθϕn− αθnwf

)
γfδf

+
(
(αθ − α)nwf + (α− αθ)ϕn

)
γfγm +

(
αθϕn− αθnwf

)
γ2
f

Regime 4b: η = 0, σ > 0, τ = 0, ν > 0

hm = 0

hf =

(
(θ − 1)nt̃f + (1− θ)n− θ + 1

)
δm +

(
−θnt̃f + θn+ θ

)
δf

θ µf + (1− θ)δm + θδf + (α− αθ)γm + αθγf

tm = 0
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tf = −

θn µ2
f +

(
(1− θ)n δm + θn δf + (α− αθ)n γm + (αθnt̃f + αθn− αθ)γf

)
µf

+
(
α− αθ

)
n γf δm + αθn γf δf

+
(
(α2 − α2θ)nt̃f + α2θ − α2

)
γfγm +

(
α2θnt̃f − α2θ

)
γ2
f

θn µ2
f +

(
(1− θ)n δm + θn δf + (α− αθ)n γm + 2αθn γf

)
µf

+
(
α− αθ

)
n γf δm + αθn γf δf

+
(
α2 − α2θ

)
n γfγm + α2θn γ2

f

Regime 4c: η = 0, σ > 0, τ > 0, ν = 0

hm = −
(
(θ − 1)nt̃m − θ + 1

)
δm +

(
θ − θnt̃m

)
δf

(θ − 1)µm + (θ − 1)δm − θδf

hf = 0

tm = 0

tf = − nµf + (αnt̃f − α)γf
nµf + αn γf

C.1 Proof of Proposition 1

Stage 2. Fix (hf , hm). Player i solves a strictly concave problem in ti:

vi(ti; t−i, hf , hm) = log(c) + µi log
(
1− hi − (ti + t̃i)n

)
+ γi log

(
(1 + tf )

α(1 + tm)
1−αn

)
,

over a nonempty, convex, compact interval for ti (A3). The second derivative in own strategy,

∂2vi
∂t2i

= − µin
2(

1− hi − (ti + t̃i)n
)2 − γi

(1 + ti)2
×

α if i = f,

1− α if i = m,

is strictly negative, so each payoff is strictly concave in own action. The Jacobian of first-

order conditions has a symmetric part whose diagonal entries dominate the off-diagonal

terms (the cross–partial from log q), implying diagonal strict concavity (DSC). By Rosen’s

(1965) theorem, a unique Nash equilibrium (t∗f , t
∗
m) exists; by the implicit function theorem

and DSC, (t∗f , t
∗
m) is continuous in (hf , hm).
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Stage 1. Define V (hf , hm) = θvf
(
hf , hm, t

∗(h)
)
+ (1 − θ)vm

(
hf , hm, t

∗(h)
)
. The feasible

set for (hf , hm) is convex/compact (A3). The only non-affine term in (hf , hm) is log c with

c = ϕ(s)wfhf + wmhm. Under A2, the mapping (hf , hm) 7→ log c is strictly concave on the

feasible set.19 All remaining terms in V are (strictly) concave in (hf , hm), and composition

with the single-valued continuous correspondence t∗(h) preserves concavity. Hence V is

strictly concave and attains a unique maximizer (h∗
f , h

∗
m). Combining with the unique (t∗f , t

∗
m)

from Stage 2 yields a unique subgame-perfect equilibrium.

19For ϕ(s) = exp[−χsκ] with s =
wfhf

wfhf+wmhm
the Hessian of log c is negative definite whenever χ ≤

χ̄(κ,wf , wm, h, h); an explicit bound is obtained by comparing |∂2 log c/∂hi∂hj | with the diagonal terms and
using the fact that hi ∈ [h, h]. If s is defined on potential shares wf/(wf + wm), log c is strictly concave
without any restriction on χ.
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